Abstract:Traditional gradient-based sampling methods, like standard Hamiltonian Monte Carlo, require that the desired target distribution is continuous and differentiable. This limits the types of models one can define, although the presented models capture the reality in the observations better. In this project, Generalized Randomized Hamiltonian Monte Carlo (GRHMC) processes for sampling continuous densities with discontinuous gradient and piecewise smooth targets are proposed. The methods combine the advantages of Hamiltonian Monte Carlo methods with the nature of continuous time processes in the form of piecewise deterministic Markov processes to sample from such distributions. It is argued that the techniques lead to GRHMC processes that admit the desired target distribution as the invariant distribution in both scenarios. Simulation experiments verifying this fact and several relevant real-life models are presented, including a new parameterization of the spike and slab prior for regularized linear regression that returns sparse coefficient estimates and a regime switching volatility model.
Abstract:Three approaches for adaptively tuning diagonal scale matrices for HMC are discussed and compared. The common practice of scaling according to estimated marginal standard deviations is taken as a benchmark. Scaling according to the mean log-target gradient (ISG), and a scaling method targeting that the frequency of when the underlying Hamiltonian dynamics crosses the respective medians should be uniform across dimensions, are taken as alternatives. Numerical studies suggest that the ISG method leads in many cases to more efficient sampling than the benchmark, in particular in cases with strong correlations or non-linear dependencies. The ISG method is also easy to implement, computationally cheap and would be relatively simple to include in automatically tuned codes as an alternative to the benchmark practice.