Katie
Abstract:Large Language Models (LLMs) have demonstrated their potential in hardware design tasks, such as Hardware Description Language (HDL) generation and debugging. Yet, their performance in real-world, repository-level HDL projects with thousands or even tens of thousands of code lines is hindered. To this end, we propose HDLxGraph, a novel framework that integrates Graph Retrieval Augmented Generation (Graph RAG) with LLMs, introducing HDL-specific graph representations by incorporating Abstract Syntax Trees (ASTs) and Data Flow Graphs (DFGs) to capture both code graph view and hardware graph view. HDLxGraph utilizes a dual-retrieval mechanism that not only mitigates the limited recall issues inherent in similarity-based semantic retrieval by incorporating structural information, but also enhances its extensibility to various real-world tasks by a task-specific retrieval finetuning. Additionally, to address the lack of comprehensive HDL search benchmarks, we introduce HDLSearch, a multi-granularity evaluation dataset derived from real-world repository-level projects. Experimental results demonstrate that HDLxGraph significantly improves average search accuracy, debugging efficiency and completion quality by 12.04%, 12.22% and 5.04% compared to similarity-based RAG, respectively. The code of HDLxGraph and collected HDLSearch benchmark are available at https://github.com/Nick-Zheng-Q/HDLxGraph.
Abstract:With Large Language Models (LLMs) recently demonstrating impressive proficiency in code generation, it is promising to extend their abilities to Hardware Description Language (HDL). However, LLMs tend to generate single HDL code blocks rather than hierarchical structures for hardware designs, leading to hallucinations, particularly in complex designs like Domain-Specific Accelerators (DSAs). To address this, we propose HiVeGen, a hierarchical LLM-based Verilog generation framework that decomposes generation tasks into LLM-manageable hierarchical submodules. HiVeGen further harnesses the advantages of such hierarchical structures by integrating automatic Design Space Exploration (DSE) into hierarchy-aware prompt generation, introducing weight-based retrieval to enhance code reuse, and enabling real-time human-computer interaction to lower error-correction cost, significantly improving the quality of generated designs.