Abstract:Training large language models (LLMs) is resource-intensive and expensive, making protecting intellectual property (IP) for LLMs crucial. Recently, embedding fingerprints into LLMs has emerged as a prevalent method for establishing model ownership. However, existing back-door-based methods suffer from limited stealth and efficiency. To simultaneously address these issues, we propose EditMF, a training-free fingerprinting paradigm that achieves highly imperceptible fingerprint embedding with minimal computational overhead. Ownership bits are mapped to compact, semantically coherent triples drawn from an encrypted artificial knowledge base (e.g., virtual author-novel-protagonist facts). Causal tracing localizes the minimal set of layers influencing each triple, and a zero-space update injects the fingerprint without perturbing unrelated knowledge. Verification requires only a single black-box query and succeeds when the model returns the exact pre-embedded protagonist. Empirical results on LLaMA and Qwen families show that EditMF combines high imperceptibility with negligible model's performance loss, while delivering robustness far beyond LoRA-based fingerprinting and approaching that of SFT embeddings. Extensive experiments demonstrate that EditMF is an effective and low-overhead solution for secure LLM ownership verification.
Abstract:Recent advances in large language models (LLMs) have blurred the boundary of high-quality text generation between humans and machines, which is favorable for generative text steganography. While, current advanced steganographic mapping is not suitable for LLMs since most users are restricted to accessing only the black-box API or user interface of the LLMs, thereby lacking access to the training vocabulary and its sampling probabilities. In this paper, we explore a black-box generative text steganographic method based on the user interfaces of large language models, which is called LLM-Stega. The main goal of LLM-Stega is that the secure covert communication between Alice (sender) and Bob (receiver) is conducted by using the user interfaces of LLMs. Specifically, We first construct a keyword set and design a new encrypted steganographic mapping to embed secret messages. Furthermore, to guarantee accurate extraction of secret messages and rich semantics of generated stego texts, an optimization mechanism based on reject sampling is proposed. Comprehensive experiments demonstrate that the proposed LLM-Stega outperforms current state-of-the-art methods.