Abstract:Adapting LLM agents to domain-specific tool calling remains notably brittle under evolving interfaces. Prompt and schema engineering is easy to deploy but often fragile under distribution shift and strict parsers, while continual parameter-efficient fine-tuning improves reliability at the cost of training, maintenance, and potential forgetting. We identify a critical Lazy Agent failure mode where tool necessity is nearly perfectly decodable from mid-layer activations, yet the model remains conservative in entering tool mode, revealing a representation-behavior gap. We propose Activation Steering Adapter (ASA), a training-free, inference-time controller that performs a single-shot mid-layer intervention and targets tool domains via a router-conditioned mixture of steering vectors with a probe-guided signed gate to amplify true intent while suppressing spurious triggers. On MTU-Bench with Qwen2.5-1.5B, ASA improves strict tool-use F1 from 0.18 to 0.50 while reducing the false positive rate from 0.15 to 0.05, using only about 20KB of portable assets and no weight updates.
Abstract:For real-world deployment of general-purpose LLM agents, the core challenge is often not tool use itself, but efficient domain adaptation under rapidly evolving toolsets, APIs, and protocols. Repeated LoRA or SFT across domains incurs exponentially growing training and maintenance costs, while prompt or schema methods are brittle under distribution shift and complex interfaces. We propose \textbf{Activation Steering Adapter (ASA}), a lightweight, inference-time, training-free mechanism that reads routing signals from intermediate activations and uses an ultra-light router to produce adaptive control strengths for precise domain alignment. Across multiple model scales and domains, ASA achieves LoRA-comparable adaptation with substantially lower overhead and strong cross-model transferability, making it ideally practical for robust, scalable, and efficient multi-domain tool ecosystems with frequent interface churn dynamics.