Abstract:Few-Shot Segmentation(FSS) aims to efficient segmentation of new objects with few labeled samples. However, its performance significantly degrades when domain discrepancies exist between training and deployment. Cross-Domain Few-Shot Segmentation(CD-FSS) is proposed to mitigate such performance degradation. Current CD-FSS methods primarily sought to develop segmentation models on a source domain capable of cross-domain generalization. However, driven by escalating concerns over data privacy and the imperative to minimize data transfer and training expenses, the development of source-free CD-FSS approaches has become essential. In this work, we propose a source-free CD-FSS method that leverages both textual and visual information to facilitate target domain task adaptation without requiring source domain data. Specifically, we first append Task-Specific Attention Adapters (TSAA) to the feature pyramid of a pretrained backbone, which adapt multi-level features extracted from the shared pre-trained backbone to the target task. Then, the parameters of the TSAA are trained through a Visual-Visual Embedding Alignment (VVEA) module and a Text-Visual Embedding Alignment (TVEA) module. The VVEA module utilizes global-local visual features to align image features across different views, while the TVEA module leverages textual priors from pre-aligned multi-modal features (e.g., from CLIP) to guide cross-modal adaptation. By combining the outputs of these modules through dense comparison operations and subsequent fusion via skip connections, our method produces refined prediction masks. Under both 1-shot and 5-shot settings, the proposed approach achieves average segmentation accuracy improvements of 2.18\% and 4.11\%, respectively, across four cross-domain datasets, significantly outperforming state-of-the-art CD-FSS methods. Code are available at https://github.com/ljm198134/TVGTANet.
Abstract:Due to the contradiction of medical image processing, that is, the application of medical images is more and more widely and the limitation of medical images is difficult to label, few-shot learning technology has begun to receive more attention in the field of medical image processing. This paper proposes a Cross-Reference Transformer for medical image segmentation, which addresses the lack of interaction between the existing Cross-Reference support image and the query image. It can better mine and enhance the similar parts of support features and query features in high-dimensional channels. Experimental results show that the proposed model achieves good results on both CT dataset and MRI dataset.