Abstract:Deploying deep learning models for plant disease detection on edge devices such as IoT sensors, smartphones, and embedded systems is severely constrained by limited computational resources and energy budgets. To address this challenge, we introduce a novel Dynamic Meta-Ensemble Framework (DMEF) for high-accuracy plant disease diagnosis under resource constraints. DMEF employs an adaptive weighting mechanism that dynamically combines the predictions of three lightweight convolutional neural networks (MobileNetV2, NASNetMobile, and InceptionV3) by optimizing a trade-off between accuracy improvements (DeltaAcc) and computational efficiency (model size). During training, the ensemble weights are updated iteratively, favoring models exhibiting high performance and low complexity. Extensive experiments on benchmark datasets for potato and maize diseases demonstrate state-of-the-art classification accuracies of 99.53% and 96.61%, respectively, surpassing standalone models and static ensembles by 2.1% and 6.3%. With computationally efficient inference latency (<75ms) and a compact footprint (<1 million parameters), DMEF shows strong potential for edge-based agricultural monitoring, suggesting viability for scalable crop disease management. This bridges the gap between high-accuracy AI and practical field applications.
Abstract:Maize disease classification plays a vital role in mitigating yield losses and ensuring food security. However, the deployment of traditional disease detection models in resource-constrained environments, such as those using smartphones and drones, faces challenges due to high computational costs. To address these challenges, we propose LWMSCNN-SE, a lightweight convolutional neural network (CNN) that integrates multi-scale feature extraction, depthwise separable convolutions, and squeeze-and-Excitation (SE) attention mechanisms. This novel combination enables the model to achieve 96.63% classification accuracy with only 241,348 parameters and 0.666 GFLOPs, making it suitable for real-time deployment in field applications. Our approach addresses the accuracy--efficiency trade-off by delivering high accuracy while maintaining low computational costs, demonstrating its potential for efficient maize disease diagnosis on edge devices in precision farming systems.