Abstract:The integration of diffusion priors with temporal alignment has emerged as a transformative paradigm for video restoration, delivering fantastic perceptual quality, yet the practical deployment of such frameworks is severely constrained by prohibitive inference latency and temporal instability when confronted with complex real-world degradations. To address these limitations, we propose \textbf{D$^2$-VR}, a single-image diffusion-based video-restoration framework with low-step inference. To obtain precise temporal guidance under severe degradation, we first design a Degradation-Robust Flow Alignment (DRFA) module that leverages confidence-aware attention to filter unreliable motion cues. We then incorporate an adversarial distillation paradigm to compress the diffusion sampling trajectory into a rapid few-step regime. Finally, a synergistic optimization strategy is devised to harmonize perceptual quality with rigorous temporal consistency. Extensive experiments demonstrate that D$^2$-VR achieves state-of-the-art performance while accelerating the sampling process by \textbf{12$\times$}
Abstract:Text-to-image (T2I) diffusion models such as SDXL and FLUX have achieved impressive photorealism, yet small-scale distortions remain pervasive in limbs, face, text and so on. Existing refinement approaches either perform costly iterative re-generation or rely on vision-language models (VLMs) with weak spatial grounding, leading to semantic drift and unreliable local edits. To close this gap, we propose Agentic Retoucher, a hierarchical decision-driven framework that reformulates post-generation correction as a human-like perception-reasoning-action loop. Specifically, we design (1) a perception agent that learns contextual saliency for fine-grained distortion localization under text-image consistency cues, (2) a reasoning agent that performs human-aligned inferential diagnosis via progressive preference alignment, and (3) an action agent that adaptively plans localized inpainting guided by user preference. This design integrates perceptual evidence, linguistic reasoning, and controllable correction into a unified, self-corrective decision process. To enable fine-grained supervision and quantitative evaluation, we further construct GenBlemish-27K, a dataset of 6K T2I images with 27K annotated artifact regions across 12 categories. Extensive experiments demonstrate that Agentic Retoucher consistently outperforms state-of-the-art methods in perceptual quality, distortion localization and human preference alignment, establishing a new paradigm for self-corrective and perceptually reliable T2I generation.