Abstract:Long-horizon goal-conditioned tasks pose fundamental challenges for reinforcement learning (RL), particularly when goals are distant and rewards are sparse. While hierarchical and graph-based methods offer partial solutions, they often suffer from subgoal infeasibility and inefficient planning. We introduce Strict Subgoal Execution (SSE), a graph-based hierarchical RL framework that enforces single-step subgoal reachability by structurally constraining high-level decision-making. To enhance exploration, SSE employs a decoupled exploration policy that systematically traverses underexplored regions of the goal space. Furthermore, a failure-aware path refinement, which refines graph-based planning by dynamically adjusting edge costs according to observed low-level success rates, thereby improving subgoal reliability. Experimental results across diverse long-horizon benchmarks demonstrate that SSE consistently outperforms existing goal-conditioned RL and hierarchical RL approaches in both efficiency and success rate.
Abstract:Meta reinforcement learning aims to develop policies that generalize to unseen tasks sampled from a task distribution. While context-based meta-RL methods improve task representation using task latents, they often struggle with out-of-distribution (OOD) tasks. To address this, we propose Task-Aware Virtual Training (TAVT), a novel algorithm that accurately captures task characteristics for both training and OOD scenarios using metric-based representation learning. Our method successfully preserves task characteristics in virtual tasks and employs a state regularization technique to mitigate overestimation errors in state-varying environments. Numerical results demonstrate that TAVT significantly enhances generalization to OOD tasks across various MuJoCo and MetaWorld environments.