Abstract:There have been several attempts to use deep learning based on brain fMRI signals to classify cognitive impairment diseases. However, deep learning is a hidden black box model that makes it difficult to interpret the process of classification. To address this issue, we propose a novel analytical framework that interprets the classification result from deep learning processes. We first derive the region of interest (ROI) functional connectivity network (FCN) by embedding functions based on their similar signal patterns. Then, using the self-attention equipped deep learning model, we classify diseases based on their FCN. Finally, in order to interpret the classification results, we employ a latent space item-response interaction network model to identify the significant functions that exhibit distinct connectivity patterns when compared to other diseases. The application of this proposed framework to the four types of cognitive impairment shows that our approach is valid for determining the significant ROI functions.
Abstract:Nowadays, pre-trained sequence-to-sequence models such as BERTSUM and BART have shown state-of-the-art results in abstractive summarization. In these models, during fine-tuning, the encoder transforms sentences to context vectors in the latent space and the decoder learns the summary generation task based on the context vectors. In our approach, we consider two clusters of salient and non-salient context vectors, using which the decoder can attend more to salient context vectors for summary generation. For this, we propose a novel clustering transformer layer between the encoder and the decoder, which first generates two clusters of salient and non-salient vectors, and then normalizes and shrinks the clusters to make them apart in the latent space. Our experimental result shows that the proposed model outperforms the existing BART model by learning these distinct cluster patterns, improving up to 4% in ROUGE and 0.3% in BERTScore on average in CNN/DailyMail and XSUM data sets.