Abstract:A quadruped robot faces balancing challenges on a six-degrees-of-freedom moving platform, like subways, buses, airplanes, and yachts, due to independent platform motions and resultant diverse inertia forces on the robot. To alleviate these challenges, we present the Learning-based Active Stabilization on Moving Platforms (\textit{LAS-MP}), featuring a self-balancing policy and system state estimators. The policy adaptively adjusts the robot's posture in response to the platform's motion. The estimators infer robot and platform states based on proprioceptive sensor data. For a systematic training scheme across various platform motions, we introduce platform trajectory generation and scheduling methods. Our evaluation demonstrates superior balancing performance across multiple metrics compared to three baselines. Furthermore, we conduct a detailed analysis of the \textit{LAS-MP}, including ablation studies and evaluation of the estimators, to validate the effectiveness of each component.
Abstract:Non-prehensile manipulation using onboard sensing presents a fundamental challenge: the manipulated object occludes the sensor's field of view, creating occluded regions that can lead to collisions. We propose CURA-PPO, a reinforcement learning framework that addresses this challenge by explicitly modeling uncertainty under partial observability. By predicting collision possibility as a distribution, we extract both risk and uncertainty to guide the robot's actions. The uncertainty term encourages active perception, enabling simultaneous manipulation and information gathering to resolve occlusions. When combined with confidence maps that capture observation reliability, our approach enables safe navigation despite severe sensor occlusion. Extensive experiments across varying object sizes and obstacle configurations demonstrate that CURA-PPO achieves up to 3X higher success rates than the baselines, with learned behaviors that handle occlusions. Our method provides a practical solution for autonomous manipulation in cluttered environments using only onboard sensing.
Abstract:We propose a hierarchical reinforcement learning (HRL) framework for efficient Navigation Among Movable Obstacles (NAMO) using a mobile manipulator. Our approach combines interaction-based obstacle property estimation with structured pushing strategies, facilitating the dynamic manipulation of unforeseen obstacles while adhering to a pre-planned global path. The high-level policy generates pushing commands that consider environmental constraints and path-tracking objectives, while the low-level policy precisely and stably executes these commands through coordinated whole-body movements. Comprehensive simulation-based experiments demonstrate improvements in performing NAMO tasks, including higher success rates, shortened traversed path length, and reduced goal-reaching times, compared to baselines. Additionally, ablation studies assess the efficacy of each component, while a qualitative analysis further validates the accuracy and reliability of the real-time obstacle property estimation.