ANL
Abstract:We develop and analyze a method for stochastic simulation optimization relying on Gaussian process models within a trust-region framework. We are interested in the case when the variance of the objective function is large. We propose to rely on replication and local modeling to cope with this high-throughput regime, where the number of evaluations may become large to get accurate results while still keeping good performance. We propose several schemes to encourage replication, from the choice of the acquisition function to setup evaluation costs. Compared with existing methods, our results indicate good scaling, in terms of both accuracy (several orders of magnitude better than existing methods) and speed (taking into account evaluation costs).
Abstract:We propose a novel Bayesian method to solve the maximization of a time-dependent expensive-to-evaluate oracle. We are interested in the decision that maximizes the oracle at a finite time horizon, when relatively few noisy evaluations can be performed before the horizon. Our recursive, two-step lookahead expected payoff ($\texttt{r2LEY}$) acquisition function makes nonmyopic decisions at every stage by maximizing the estimated expected value of the oracle at the horizon. $\texttt{r2LEY}$ circumvents the evaluation of the expensive multistep (more than two steps) lookahead acquisition function by recursively optimizing a two-step lookahead acquisition function at every stage; unbiased estimators of this latter function and its gradient are utilized for efficient optimization. $\texttt{r2LEY}$ is shown to exhibit natural exploration properties far from the time horizon, enabling accurate emulation of the oracle, which is exploited in the final decision made at the horizon. To demonstrate the utility of $\texttt{r2LEY}$, we compare it with time-dependent extensions of popular myopic acquisition functions via both synthetic and real-world datasets.