Abstract:Time Series Foundation Models (TSFMs) leverage extensive pretraining to accurately predict unseen time series during inference, without the need for task-specific fine-tuning. Through large-scale evaluations on standard benchmarks, we find that leading transformer-based TSFMs exhibit redundant components in their intermediate layers. We introduce a set of tools for mechanistic interpretability of TSFMs, including ablations of specific components and direct logit attribution on the residual stream. Our findings are consistent across several leading TSFMs with diverse architectures, and across a diverse set of real-world and synthetic time-series datasets. We discover that all models in our study are robust to ablations of entire layers. Furthermore, we develop a theoretical framework framing transformers as kernel regressors, motivating a purely intrinsic strategy for ablating heads based on the stable rank of the per-head projection matrices. Using this approach, we uncover the specific heads responsible for degenerate phenomena widely observed in TSFMs, such as parroting of motifs from the context and seasonality bias. Our study sheds light on the universal properties of this emerging class of architectures for continuous-time sequence modeling.
Abstract:Chaotic systems are intrinsically sensitive to small errors, challenging efforts to construct predictive data-driven models of real-world dynamical systems such as fluid flows or neuronal activity. Prior efforts comprise either specialized models trained separately on individual time series, or foundation models trained on vast time series databases with little underlying dynamical structure. Motivated by dynamical systems theory, we present Panda, Patched Attention for Nonlinear DynAmics. We train Panda on a novel synthetic, extensible dataset of $2 \times 10^4$ chaotic dynamical systems that we discover using an evolutionary algorithm. Trained purely on simulated data, Panda exhibits emergent properties: zero-shot forecasting of unseen real world chaotic systems, and nonlinear resonance patterns in cross-channel attention heads. Despite having been trained only on low-dimensional ordinary differential equations, Panda spontaneously develops the ability to predict partial differential equations without retraining. We demonstrate a neural scaling law for differential equations, underscoring the potential of pretrained models for probing abstract mathematical domains like nonlinear dynamics.