Abstract:The Traveling Salesman Problem is one of the most intensively studied combinatorial optimization problems due both to its range of real-world applications and its computational complexity. When combined with the Set Covering Problem, it raises even more issues related to tractability and scalability. We study a combined Set Covering and Traveling Salesman problem and provide a mixed integer programming formulation to solve the problem. Motivated by applications where the optimal policy needs to be updated on a regular basis and repetitively solving this via MIP can be computationally expensive, we propose a machine learning approach to effectively deal with this problem by providing an opportunity to learn from historical optimal solutions that are derived from the MIP formulation. We also present a case study using the vaccine distribution chain of the World Health Organization, and provide numerical results with data derived from four countries in sub-Saharan Africa.
Abstract:Vaccination has been proven to be the most effective method to prevent infectious diseases. However, there are still millions of children in low and middle-income countries who are not covered by routine vaccines and remain at risk. The World Health Organization's Expanded Programme on Immunization (WHO-EPI) was designed to provide universal childhood vaccine access for children across the world and in this work, we address the design of the distribution network for WHO-EPI vaccines. In particular, we formulate the network design problem as a mixed integer program (MIP) and present a new algorithm for typical problems that are too large to be solved using commercial MIP software. We test the algorithm using data derived from four different countries in sub-Saharan Africa and show that the algorithm is able to obtain high-quality solutions for even the largest problems within a few minutes.