Abstract:Surface electromyography (sEMG) at the wrists could enable natural, keyboard-free text entry, yet the state-of-the-art emg2qwerty baseline still misrecognizes $51.8\%$ of characters in the zero-shot setting on unseen users and $7.0\%$ after user-specific fine-tuning. We trace many of these errors to mismatched cross-user signal statistics, fragile reliance on high-order feature dependencies, and the absence of architectural inductive biases aligned with the bilateral nature of typing. To address these issues, we introduce three simple modifications: (i) Rolling Time Normalization, which adaptively aligns input distributions across users; (ii) Aggressive Channel Masking, which encourages reliance on low-order feature combinations more likely to generalize across users; and (iii) a Split-and-Share encoder that processes each hand independently with weight-shared streams to reflect the bilateral symmetry of the neuromuscular system. Combined with a five-fold reduction in spectral resolution ($33\!\rightarrow\!6$ frequency bands), these components yield a compact Split-and-Share model, SplashNet-mini, which uses only $\tfrac14$ the parameters and $0.6\times$ the FLOPs of the baseline while reducing character-error rate (CER) to $36.4\%$ zero-shot and $5.9\%$ after fine-tuning. An upscaled variant, SplashNet ($\tfrac12$ the parameters, $1.15\times$ the FLOPs of the baseline), further lowers error to $35.7\%$ and $5.5\%$, representing relative improvements of $31\%$ and $21\%$ in the zero-shot and fine-tuned settings, respectively. SplashNet therefore establishes a new state of the art without requiring additional data.
Abstract:Formal logic has long been applied to natural language reasoning, but this approach can sometimes lead to conclusions that, while logically entailed, are factually inconsistent with the premises or are not typically inferred by humans. This study introduces the concept of "rulebreakers", which refers to instances where logical entailment diverges from factually acceptable inference. We present RULEBREAKERS, a novel dataset for evaluating Large Language Models' (LLMs) ability to distinguish between rulebreakers and non-rulebreakers. Focusing on modus tollens and disjunctive syllogism, we assess six state-of-the-art LLMs using RULEBREAKERS, measuring their performance in terms of token-level exact accuracy and model confidence. Our findings reveal that while most models perform poorly to moderately in recognizing rulebreakers, they demonstrate a latent ability to distinguish rulebreakers when assessed by their confidence levels. Further analysis suggests that the failure to recognize rulebreakers is potentially associated with the models' world knowledge and their attention distribution patterns. This research highlights the limitation of LLMs' reasoning capabilities, and contributes to the ongoing discussion on reasoning in LLMs.