Abstract:Test-time training (TTT) adapts language models through gradient-based updates at inference. But is adaptation the right strategy? We study compute-optimal test-time strategies for verifiable execution-grounded (VEG) tasks, domains like GPU kernel optimization where a deterministic evaluator provides dense, continuous reward signals. Using KernelBench as our testbed and a 120B-parameter model (GPT-OSS-120B with LoRA adaptation), we find that search outperforms minimal adaptation (1-5 gradient steps): Best-of-N sampling achieves 90% task success (18/20 tasks) at K=64 across the full KernelBench L1 eval set while TTT's best checkpoint reaches only 30.6% (3-seed mean), with TTT's "equivalent K" falling below 1, worse than single-sample inference. The failure mode is over-sharpening: gradient updates collapse diversity toward mediocre solutions rather than discovering optimal ones. Our main contribution is surprisal-guided selection: selecting the highest-surprisal (lowest-confidence) correct sample yields 80% success vs. 50% for most-confident selection, a 30% improvement. Extending to surprisal-guided-top3 matches oracle performance at 100%. This zero-cost strategy, validated through length-controlled analysis, recovers oracle performance. For dense-reward VEG tasks, compute should be allocated to sample diversity and intelligent selection rather than gradient adaptation. The surprisal-guided selection principle may generalize to other execution-grounded domains where optimal solutions occupy the distribution tail.
Abstract:As large language models improve, so do their offensive applications: frontier agents now generate working exploits for under $50 in compute (Heelan, 2026). Defensive incident response (IR) agents must keep pace, but existing benchmarks conflate action execution with correct execution, hiding calibration failures when agents process adversarial evidence. We introduce OpenSec, a dual-control reinforcement learning environment that evaluates IR agents under realistic prompt injection scenarios. Unlike static capability benchmarks, OpenSec scores world-state-changing containment actions under adversarial evidence via execution-based metrics: time-to-first-containment (TTFC), blast radius (false positives per episode), and injection violation rates. Evaluating four frontier models on 40 standard-tier episodes, we find consistent over-triggering in this setting: GPT-5.2, Gemini 3, and DeepSeek execute containment in 100% of episodes with 90-97% false positive rates. Claude Sonnet 4.5 shows partial calibration (85% containment, 72% FP), demonstrating that OpenSec surfaces a calibration failure mode hidden by aggregate success metrics. Code available at https://github.com/jbarnes850/opensec-env.