Abstract:In this paper we discuss the capability of large language models to base their answer and provide proper references when dealing with legal matters of non-english and non-chinese speaking country. We discuss the history of legal information retrieval, the difference between case law and statute law, its impact on the legal tasks and analyze the latest research in this field. Basing on that background we introduce gAIus, the architecture of the cognitive LLM-based agent, whose responses are based on the knowledge retrieved from certain legal act, which is Polish Civil Code. We propose a retrieval mechanism which is more explainable, human-friendly and achieves better results than embedding-based approaches. To evaluate our method we create special dataset based on single-choice questions from entrance exams for law apprenticeships conducted in Poland. The proposed architecture critically leveraged the abilities of used large language models, improving the gpt-3.5-turbo-0125 by 419%, allowing it to beat gpt-4o and lifting gpt-4o-mini score from 31% to 86%. At the end of our paper we show the possible future path of research and potential applications of our findings.
Abstract:TRIZ, the Theory of Inventive Problem Solving, is a structured, knowledge-based framework for innovation and abstracting problems to find inventive solutions. However, its application is often limited by the complexity and deep interdisciplinary knowledge required. Advancements in Large Language Models (LLMs) have revealed new possibilities for automating parts of this process. While previous studies have explored single LLMs in TRIZ applications, this paper introduces a multi-agent approach. We propose an LLM-based multi-agent system, called TRIZ agents, each with specialized capabilities and tool access, collaboratively solving inventive problems based on the TRIZ methodology. This multi-agent system leverages agents with various domain expertise to efficiently navigate TRIZ steps. The aim is to model and simulate an inventive process with language agents. We assess the effectiveness of this team of agents in addressing complex innovation challenges based on a selected case study in engineering. We demonstrate the potential of agent collaboration to produce diverse, inventive solutions. This research contributes to the future of AI-driven innovation, showcasing the advantages of decentralized problem-solving in complex ideation tasks.
Abstract:Accurate option pricing is essential for effective trading and risk management in financial markets, yet it remains challenging due to market volatility and the limitations of traditional models like Black-Scholes. In this paper, we investigate the application of the Informer neural network for option pricing, leveraging its ability to capture long-term dependencies and dynamically adjust to market fluctuations. This research contributes to the field of financial forecasting by introducing Informer's efficient architecture to enhance prediction accuracy and provide a more adaptable and resilient framework compared to existing methods. Our results demonstrate that Informer outperforms traditional approaches in option pricing, advancing the capabilities of data-driven financial forecasting in this domain.
Abstract:This paper investigates the application of Transformer-based neural networks to stock price forecasting, with a special focus on the intersection of machine learning techniques and financial market analysis. The evolution of Transformer models, from their inception to their adaptation for time series analysis in financial contexts, is reviewed and discussed. Central to our study is the exploration of the Hidformer model, which is currently recognized for its promising performance in time series prediction. The primary aim of this paper is to determine whether Hidformer will also prove itself in the task of stock price prediction. This slightly modified model serves as the framework for our experiments, integrating the principles of technical analysis with advanced machine learning concepts to enhance stock price prediction accuracy. We conduct an evaluation of the Hidformer model's performance, using a set of criteria to determine its efficacy. Our findings offer additional insights into the practical application of Transformer architectures in financial time series forecasting, highlighting their potential to improve algorithmic trading strategies, including human decision making.