Abstract:In the rapidly evolving educational landscape, the unbiased assessment of soft skills is a significant challenge, particularly in higher education. This paper presents a fuzzy logic approach that employs a Granular Linguistic Model of Phenomena integrated with multimodal analysis to evaluate soft skills in undergraduate students. By leveraging computational perceptions, this approach enables a structured breakdown of complex soft skill expressions, capturing nuanced behaviours with high granularity and addressing their inherent uncertainties, thereby enhancing interpretability and reliability. Experiments were conducted with undergraduate students using a developed tool that assesses soft skills such as decision-making, communication, and creativity. This tool identifies and quantifies subtle aspects of human interaction, such as facial expressions and gesture recognition. The findings reveal that the framework effectively consolidates multiple data inputs to produce meaningful and consistent assessments of soft skills, showing that integrating multiple modalities into the evaluation process significantly improves the quality of soft skills scores, making the assessment work transparent and understandable to educational stakeholders.
Abstract:In the context of the rapid dissemination of multimedia content, identifying disinformation on social media platforms such as TikTok represents a significant challenge. This study introduces a hybrid framework that combines the computational power of deep learning with the interpretability of fuzzy logic to detect suspected disinformation in TikTok videos. The methodology is comprised of two core components: a multimodal feature analyser that extracts and evaluates data from text, audio, and video; and a multimodal disinformation detector based on fuzzy logic. These systems operate in conjunction to evaluate the suspicion of spreading disinformation, drawing on human behavioural cues such as body language, speech patterns, and text coherence. Two experiments were conducted: one focusing on context-specific disinformation and the other on the scalability of the model across broader topics. For each video evaluated, high-quality, comprehensive, well-structured reports are generated, providing a detailed view of the disinformation behaviours.