Abstract:Deep learning has transformed computer vision for precision agriculture, yet apple orchard monitoring remains limited by dataset constraints. The lack of diverse, realistic datasets and the difficulty of annotating dense, heterogeneous scenes. Existing datasets overlook different growth stages and stereo imagery, both essential for realistic 3D modeling of orchards and tasks like fruit localization, yield estimation, and structural analysis. To address these gaps, we present AppleGrowthVision, a large-scale dataset comprising two subsets. The first includes 9,317 high resolution stereo images collected from a farm in Brandenburg (Germany), covering six agriculturally validated growth stages over a full growth cycle. The second subset consists of 1,125 densely annotated images from the same farm in Brandenburg and one in Pillnitz (Germany), containing a total of 31,084 apple labels. AppleGrowthVision provides stereo-image data with agriculturally validated growth stages, enabling precise phenological analysis and 3D reconstructions. Extending MinneApple with our data improves YOLOv8 performance by 7.69 % in terms of F1-score, while adding it to MinneApple and MAD boosts Faster R-CNN F1-score by 31.06 %. Additionally, six BBCH stages were predicted with over 95 % accuracy using VGG16, ResNet152, DenseNet201, and MobileNetv2. AppleGrowthVision bridges the gap between agricultural science and computer vision, by enabling the development of robust models for fruit detection, growth modeling, and 3D analysis in precision agriculture. Future work includes improving annotation, enhancing 3D reconstruction, and extending multimodal analysis across all growth stages.
Abstract:This work proposes a novel concept for tree and plant reconstruction by directly inferring a Lindenmayer-System (L-System) word representation from image data in an image captioning approach. We train a model end-to-end which is able to translate given images into L-System words as a description of the displayed tree. To prove this concept, we demonstrate the applicability on 2D tree topologies. Transferred to real image data, this novel idea could lead to more efficient, accurate and semantically meaningful tree and plant reconstruction without using error-prone point cloud extraction, and other processes usually utilized in tree reconstruction. Furthermore, this approach bypasses the need for a predefined L-System grammar and enables species-specific L-System inference without biological knowledge.