Abstract:The exponential growth of DNA sequencing data has outpaced traditional heuristic-based methods, which struggle to scale effectively. Efficient computational approaches are urgently needed to support large-scale similarity search, a foundational task in bioinformatics for detecting homology, functional similarity, and novelty among genomic and proteomic sequences. Although tools like BLAST have been widely used and remain effective in many scenarios, they suffer from limitations such as high computational cost and poor performance on divergent sequences. In this work, we explore embedding-based similarity search methods that learn latent representations capturing deeper structural and functional patterns beyond raw sequence alignment. We systematically evaluate two state-of-the-art vector search libraries, FAISS and ScaNN, on biologically meaningful gene embeddings. Unlike prior studies, our analysis focuses on bioinformatics-specific embeddings and benchmarks their utility for detecting novel sequences, including those from uncharacterized taxa or genes lacking known homologs. Our results highlight both computational advantages (in memory and runtime efficiency) and improved retrieval quality, offering a promising alternative to traditional alignment-heavy tools.
Abstract:During times of increasing antibiotic resistance and the spread of infectious diseases like COVID-19, it is important to classify genes related to antibiotic resistance. As natural language processing has advanced with transformer-based language models, many language models that learn characteristics of nucleotide sequences have also emerged. These models show good performance in classifying various features of nucleotide sequences. When classifying nucleotide sequences, not only the sequence itself, but also various background knowledge is utilized. In this study, we use not only a nucleotide sequence-based language model but also a text language model based on PubMed articles to reflect more biological background knowledge in the model. We propose a method to fine-tune the nucleotide sequence language model and the text language model based on various databases of antibiotic resistance genes. We also propose an LLM-based augmentation technique to supplement the data and an ensemble method to effectively combine the two models. We also propose a benchmark for evaluating the model. Our method achieved better performance than the nucleotide sequence language model in the drug resistance class prediction.