Abstract:We study causal discovery from observational data in linear Gaussian systems affected by \emph{mixed latent confounding}, where some unobserved factors act broadly across many variables while others influence only small subsets. This setting is common in practice and poses a challenge for existing methods: differentiable and score-based DAG learners can misinterpret global latent effects as causal edges, while latent-variable graphical models recover only undirected structure. We propose \textsc{DCL-DECOR}, a modular, precision-led pipeline that separates these roles. The method first isolates pervasive latent effects by decomposing the observed precision matrix into a structured component and a low-rank component. The structured component corresponds to the conditional distribution after accounting for pervasive confounders and retains only local dependence induced by the causal graph and localized confounding. A correlated-noise DAG learner is then applied to this deconfounded representation to recover directed edges while modeling remaining structured error correlations, followed by a simple reconciliation step to enforce bow-freeness. We provide identifiability results that characterize the recoverable causal target under mixed confounding and show how the overall problem reduces to well-studied subproblems with modular guarantees. Synthetic experiments that vary the strength and dimensionality of pervasive confounding demonstrate consistent improvements in directed edge recovery over applying correlated-noise DAG learning directly to the confounded data.
Abstract:We study structure learning for linear Gaussian SEMs in the presence of latent confounding. Existing continuous methods excel when errors are independent, while deconfounding-first pipelines rely on pervasive factor structure or nonlinearity. We propose \textsc{DECOR}, a single likelihood-based and fully differentiable estimator that jointly learns a DAG and a correlated noise model. Our theory gives simple sufficient conditions for global parameter identifiability: if the mixed graph is bow free and the noise covariance has a uniform eigenvalue margin, then the map from $(\B,\OmegaMat)$ to the observational covariance is injective, so both the directed structure and the noise are uniquely determined. The estimator alternates a smooth-acyclic graph update with a convex noise update and can include a light bow complementarity penalty or a post hoc reconciliation step. On synthetic benchmarks that vary confounding density, graph density, latent rank, and dimension with $n<p$, \textsc{DECOR} matches or outperforms strong baselines and is especially robust when confounding is non-pervasive, while remaining competitive under pervasiveness.