Abstract:Monitoring maternal and fetal health during pregnancy is crucial for preventing adverse outcomes. While tests such as ultrasound scans offer high accuracy, they can be costly and inconvenient. Telehealth and more accessible body shape information provide pregnant women with a convenient way to monitor their health. This study explores the potential of 3D body scan data, captured during the 18-24 gestational weeks, to predict adverse pregnancy outcomes and estimate clinical parameters. We developed a novel algorithm with two parallel streams which are used for extract body shape features: one for supervised learning to extract sequential abdominal circumference information, and another for unsupervised learning to extract global shape descriptors, alongside a branch for demographic data. Our results indicate that 3D body shape can assist in predicting preterm labor, gestational diabetes mellitus (GDM), gestational hypertension (GH), and in estimating fetal weight. Compared to other machine learning models, our algorithm achieved the best performance, with prediction accuracies exceeding 88% and fetal weight estimation accuracy of 76.74% within a 10% error margin, outperforming conventional anthropometric methods by 22.22%.
Abstract:The appearance of an object is significantly affected by the illumination conditions in the environment. This is more evident with strong reflective objects as they suffer from more dominant specular reflections, causing information loss and discontinuity in the image domain. In this paper, we present a novel framework for specular-free video recovery with special emphasis on dealing with complex motions coming from objects or camera. Our solution is a twostep approach that allows for both detection and restoration of the damaged regions on video data. We first propose a spatially adaptive detection term that searches for the damage areas. We then introduce a variational solution for specular-free video recovery that allows exploiting spatio-temporal correlations by representing prior data in a low-rank form. We demonstrate that our solution prevents major drawbacks of existing approaches while improving the performance in both detection accuracy and inpainting quality. Finally, we show that our approach can be applied to other problems such as object removal.