Abstract:The problem of optimising functions with intractable gradients frequently arise in machine learning and statistics, ranging from maximum marginal likelihood estimation procedures to fine-tuning of generative models. Stochastic approximation methods for this class of problems typically require inner sampling loops to obtain (biased) stochastic gradient estimates, which rapidly becomes computationally expensive. In this work, we develop sequential Monte Carlo (SMC) samplers for optimisation of functions with intractable gradients. Our approach replaces expensive inner sampling methods with efficient SMC approximations, which can result in significant computational gains. We establish convergence results for the basic recursions defined by our methodology which SMC samplers approximate. We demonstrate the effectiveness of our approach on the reward-tuning of energy-based models within various settings.
Abstract:We utilise a sampler originating from nonequilibrium statistical mechanics, termed here Jarzynski-adjusted Langevin algorithm (JALA), to build statistical estimation methods in latent variable models. We achieve this by leveraging Jarzynski's equality and developing algorithms based on a weighted version of the unadjusted Langevin algorithm (ULA) with recursively updated weights. Adapting this for latent variable models, we develop a sequential Monte Carlo (SMC) method that provides the maximum marginal likelihood estimate of the parameters, termed JALA-EM. Under suitable regularity assumptions on the marginal likelihood, we provide a nonasymptotic analysis of the JALA-EM scheme implemented with stochastic gradient descent and show that it provably converges to the maximum marginal likelihood estimate. We demonstrate the performance of JALA-EM on a variety of latent variable models and show that it performs comparably to existing methods in terms of accuracy and computational efficiency. Importantly, the ability to recursively estimate marginal likelihoods - an uncommon feature among scalable methods - makes our approach particularly suited for model selection, which we validate through dedicated experiments.