Department of IT & Computer Engineering, Urmia University of Technology, Orūmīyeh, Iran
Abstract:Log anomaly detection is crucial for preserving the security of operating systems. Depending on the source of log data collection, various information is recorded in logs that can be considered log modalities. In light of this intuition, unimodal methods often struggle by ignoring the different modalities of log data. Meanwhile, multimodal methods fail to handle the interactions between these modalities. Applying multimodal sentiment analysis to log anomaly detection, we propose CoLog, a framework that collaboratively encodes logs utilizing various modalities. CoLog utilizes collaborative transformers and multi-head impressed attention to learn interactions among several modalities, ensuring comprehensive anomaly detection. To handle the heterogeneity caused by these interactions, CoLog incorporates a modality adaptation layer, which adapts the representations from different log modalities. This methodology enables CoLog to learn nuanced patterns and dependencies within the data, enhancing its anomaly detection capabilities. Extensive experiments demonstrate CoLog's superiority over existing state-of-the-art methods. Furthermore, in detecting both point and collective anomalies, CoLog achieves a mean precision of 99.63%, a mean recall of 99.59%, and a mean F1 score of 99.61% across seven benchmark datasets for log-based anomaly detection. The comprehensive detection capabilities of CoLog make it highly suitable for cybersecurity, system monitoring, and operational efficiency. CoLog represents a significant advancement in log anomaly detection, providing a sophisticated and effective solution to point and collective anomaly detection through a unified framework and a solution to the complex challenges automatic log data analysis poses. We also provide the implementation of CoLog at https://github.com/NasirzadehMoh/CoLog.
Abstract:With blockchain technology rapidly progress, the smart contracts have become a common tool in a number of industries including finance, healthcare, insurance and gaming. The number of smart contracts has multiplied, and at the same time, the security of smart contracts has drawn considerable attention due to the monetary losses brought on by smart contract vulnerabilities. Existing analysis techniques are capable of identifying a large number of smart contract security flaws, but they rely too much on rigid criteria established by specialists, where the detection process takes much longer as the complexity of the smart contract rises. In this paper, we propose HyMo as a multi-modal hybrid deep learning model, which intelligently considers various input representations to consider multimodality and FastText word embedding technique, which represents each word as an n-gram of characters with BiGRU deep learning technique, as a sequence processing model that consists of two GRUs to achieve higher accuracy in smart contract vulnerability detection. The model gathers features using various deep learning models to identify the smart contract vulnerabilities. Through a series of studies on the currently publicly accessible dataset such as ScrawlD, we show that our hybrid HyMo model has excellent smart contract vulnerability detection performance. Therefore, HyMo performs better detection of smart contract vulnerabilities against other approaches.