Abstract:Large language models (LLMs) have shown impressive capability to understand and develop code. However, their capability to rigorously reason about and prove code correctness remains in question. This paper offers a comprehensive study of LLMs' capability to develop correctness proofs for system software written in Rust. We curate a new system-verification benchmark suite, VeruSAGE-Bench, which consists of 849 proof tasks extracted from eight open-source Verus-verified Rust systems. Furthermore, we design different agent systems to match the strengths and weaknesses of different LLMs (o4-mini, GPT-5, Sonnet 4, and Sonnet 4.5). Our study shows that different tools and agent settings are needed to stimulate the system-verification capability of different types of LLMs. The best LLM-agent combination in our study completes over 80% of system-verification tasks in VeruSAGE-Bench. It also completes over 90% of a set of system proof tasks not part of VeruSAGE-Bench because they had not yet been finished by human experts. This result shows the great potential for LLM-assisted development of verified system software.