Abstract:Convolutional neural networks (CNNs) have been widely used in the computer vision community, significantly improving the state-of-the-art. But learning good features often is computationally expensive in machine learning settings and is especially difficult when there is a lack of data. One-shot learning is one such area where only limited data is available. In one-shot learning, predictions have to be made after seeing only one example from one class, which requires special techniques. In this paper we explore different approaches to one-shot identification tasks in different domains including an industrial application and face recognition. We use a special technique with stacked images and use siamese capsule networks. It is encouraging to see that the approach using capsule architecture achieves strong results and exceeds other techniques on a wide range of datasets from industrial application to face recognition benchmarks while being easy to use and optimise.
Abstract:Learning Analytics (LA) is nowadays ubiquitous in many educational systems, providing the ability to collect and analyze student data in order to understand and optimize learning and the environments in which it occurs. On the other hand, the collection of data requires to comply with the growing demand regarding privacy legislation. In this paper, we use the Student Expectation of Learning Analytics Questionnaire (SELAQ) to analyze the expectations and confidence of students from different faculties regarding the processing of their data for Learning Analytics purposes. This allows us to identify four clusters of students through clustering algorithms: Enthusiasts, Realists, Cautious and Indifferents. This structured analysis provides valuable insights into the acceptance and criticism of Learning Analytics among students.
Abstract:We present a regularization-based approach for continual learning (CL) of fixed capacity convolutional neural networks (CNN) that does not suffer from the problem of catastrophic forgetting when learning multiple tasks sequentially. This method referred to as Group and Exclusive Sparsity based Continual Learning (GESCL) avoids forgetting of previous tasks by ensuring the stability of the CNN via a stability regularization term, which prevents filters detected as important for past tasks to deviate too much when learning a new task. On top of that, GESCL makes the network plastic via a plasticity regularization term that leverage the over-parameterization of CNNs to efficiently sparsify the network and tunes unimportant filters making them relevant for future tasks. Doing so, GESCL deals with significantly less parameters and computation compared to CL approaches that either dynamically expand the network or memorize past tasks' data. Experiments on popular CL vision benchmarks show that GESCL leads to significant improvements over state-of-the-art method in terms of overall CL performance, as measured by classification accuracy as well as in terms of avoiding catastrophic forgetting.