Abstract:Pain is a complex condition affecting a large portion of the population. Accurate and consistent evaluation is essential for individuals experiencing pain, and it supports the development of effective and advanced management strategies. Automatic pain assessment systems provide continuous monitoring and support clinical decision-making, aiming to reduce distress and prevent functional decline. This study has been submitted to the \textit{Second Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4PAIN)}. The proposed method introduces a pipeline that leverages respiration as the input signal and incorporates a highly efficient cross-attention transformer alongside a multi-windowing strategy. Extensive experiments demonstrate that respiration is a valuable physiological modality for pain assessment. Moreover, experiments revealed that compact and efficient models, when properly optimized, can achieve strong performance, often surpassing larger counterparts. The proposed multi-window approach effectively captures both short-term and long-term features, as well as global characteristics, thereby enhancing the model's representational capacity.
Abstract:Pain is a multifaceted phenomenon that affects a substantial portion of the population. Reliable and consistent evaluation benefits those experiencing pain and underpins the development of effective and advanced management strategies. Automatic pain-assessment systems deliver continuous monitoring, inform clinical decision-making, and aim to reduce distress while preventing functional decline. By incorporating physiological signals, these systems provide objective, accurate insights into an individual's condition. This study has been submitted to the \textit{Second Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4PAIN)}. The proposed method introduces a pipeline that leverages electrodermal activity signals as input modality. Multiple representations of the signal are created and visualized as waveforms, and they are jointly visualized within a single multi-representation diagram. Extensive experiments incorporating various processing and filtering techniques, along with multiple representation combinations, demonstrate the effectiveness of the proposed approach. It consistently yields comparable, and in several cases superior, results to traditional fusion methods, establishing it as a robust alternative for integrating different signal representations or modalities.
Abstract:Pain is a complex and pervasive condition that affects a significant portion of the population. Accurate and consistent assessment is essential for individuals suffering from pain, as well as for developing effective management strategies in a healthcare system. Automatic pain assessment systems enable continuous monitoring, support clinical decision-making, and help minimize patient distress while mitigating the risk of functional deterioration. Leveraging physiological signals offers objective and precise insights into a person's state, and their integration in a multimodal framework can further enhance system performance. This study has been submitted to the \textit{Second Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4PAIN)}. The proposed approach introduces \textit{Tiny-BioMoE}, a lightweight pretrained embedding model for biosignal analysis. Trained on $4.4$ million biosignal image representations and consisting of only $7.3$ million parameters, it serves as an effective tool for extracting high-quality embeddings for downstream tasks. Extensive experiments involving electrodermal activity, blood volume pulse, respiratory signals, peripheral oxygen saturation, and their combinations highlight the model's effectiveness across diverse modalities in automatic pain recognition tasks. \textit{\textcolor{blue}{The model's architecture (code) and weights are available at https://github.com/GkikasStefanos/Tiny-BioMoE.
Abstract:Parkinson's disease (PD) is a neurodegenerative disorder, manifesting with motor and non-motor symptoms. Depressive symptoms are prevalent in PD, affecting up to 45% of patients. They are often underdiagnosed due to overlapping motor features, such as hypomimia. This study explores deep learning (DL) models-ViViT, Video Swin Tiny, and 3D CNN-LSTM with attention layers-to assess the presence and severity of depressive symptoms, as detected by the Geriatric Depression Scale (GDS), in PD patients through facial video analysis. The same parameters were assessed in a secondary analysis taking into account whether patients were one hour after (ON-medication state) or 12 hours without (OFF-medication state) dopaminergic medication. Using a dataset of 1,875 videos from 178 patients, the Video Swin Tiny model achieved the highest performance, with up to 94% accuracy and 93.7% F1-score in binary classification (presence of absence of depressive symptoms), and 87.1% accuracy with an 85.4% F1-score in multiclass tasks (absence or mild or severe depressive symptoms).