Abstract:The quality of natural language texts in fine-tuning datasets plays a critical role in the performance of generative models, particularly in computational creativity tasks such as poem or song lyric generation. Fluency defects in generated poems significantly reduce their value. However, training texts are often sourced from internet-based platforms without stringent quality control, posing a challenge for data engineers to manage defect levels effectively. To address this issue, we propose the use of automated linguistic anomaly detection to identify and filter out low-quality texts from training datasets for creative models. In this paper, we present a comprehensive comparison of unsupervised and supervised text anomaly detection approaches, utilizing both synthetic and human-labeled datasets. We also introduce the RUPOR dataset, a collection of Russian-language human-labeled poems designed for cross-sentence grammatical error detection, and provide the full evaluation code. Our work aims to empower the community with tools and insights to improve the quality of training datasets for generative models in creative domains.
Abstract:Generative poetry systems require effective tools for data engineering and automatic evaluation, particularly to assess how well a poem adheres to versification rules, such as the correct alternation of stressed and unstressed syllables and the presence of rhymes. In this work, we introduce the Russian Poetry Scansion Tool library designed for stress mark placement in Russian-language syllabo-tonic poetry, rhyme detection, and identification of defects of poeticness. Additionally, we release RIFMA -- a dataset of poem fragments spanning various genres and forms, annotated with stress marks. This dataset can be used to evaluate the capability of modern large language models to accurately place stress marks in poetic texts. The published resources provide valuable tools for researchers and practitioners in the field of creative generative AI, facilitating advancements in the development and evaluation of generative poetry systems.