Abstract:Academic regulation advising is essential for helping students interpret and comply with institutional policies, yet building effective systems requires domain specific regulatory resources. To address this challenge, we propose REBot, an LLM enhanced advisory chatbot powered by CatRAG, a hybrid retrieval reasoning framework that integrates retrieval augmented generation with graph based reasoning. CatRAG unifies dense retrieval and graph reasoning, supported by a hierarchical, category labeled knowledge graph enriched with semantic features for domain alignment. A lightweight intent classifier routes queries to the appropriate retrieval modules, ensuring both factual accuracy and contextual depth. We construct a regulation specific dataset and evaluate REBot on classification and question answering tasks, achieving state of the art performance with an F1 score of 98.89%. Finally, we implement a web application that demonstrates the practical value of REBot in real world academic advising scenarios.
Abstract:Gene expression classification is a pivotal yet challenging task in bioinformatics, primarily due to the high dimensionality of genomic data and the risk of overfitting. To bridge this gap, we propose BOLIMES, a novel feature selection algorithm designed to enhance gene expression classification by systematically refining the feature subset. Unlike conventional methods that rely solely on statistical ranking or classifier-specific selection, we integrate the robustness of Boruta with the interpretability of LIME, ensuring that only the most relevant and influential genes are retained. BOLIMES first employs Boruta to filter out non-informative genes by comparing each feature against its randomized counterpart, thus preserving valuable information. It then uses LIME to rank the remaining genes based on their local importance to the classifier. Finally, an iterative classification evaluation determines the optimal feature subset by selecting the number of genes that maximizes predictive accuracy. By combining exhaustive feature selection with interpretability-driven refinement, our solution effectively balances dimensionality reduction with high classification performance, offering a powerful solution for high-dimensional gene expression analysis.