Abstract:Text embeddings enable numerous NLP applications but face severe privacy risks from embedding inversion attacks, which can expose sensitive attributes or reconstruct raw text. Existing differential privacy defenses assume uniform sensitivity across embedding dimensions, leading to excessive noise and degraded utility. We propose SPARSE, a user-centric framework for concept-specific privacy protection in text embeddings. SPARSE combines (1) differentiable mask learning to identify privacy-sensitive dimensions for user-defined concepts, and (2) the Mahalanobis mechanism that applies elliptical noise calibrated by dimension sensitivity. Unlike traditional spherical noise injection, SPARSE selectively perturbs privacy-sensitive dimensions while preserving non-sensitive semantics. Evaluated across six datasets with three embedding models and attack scenarios, SPARSE consistently reduces privacy leakage while achieving superior downstream performance compared to state-of-the-art DP methods.
Abstract:This study investigates the privacy risks associated with text embeddings, focusing on the scenario where attackers cannot access the original embedding model. Contrary to previous research requiring direct model access, we explore a more realistic threat model by developing a transfer attack method. This approach uses a surrogate model to mimic the victim model's behavior, allowing the attacker to infer sensitive information from text embeddings without direct access. Our experiments across various embedding models and a clinical dataset demonstrate that our transfer attack significantly outperforms traditional methods, revealing the potential privacy vulnerabilities in embedding technologies and emphasizing the need for enhanced security measures.