Abstract:3D Gaussian Splatting (3DGS) has emerged as a novel paradigm for 3D reconstruction from satellite imagery. However, in multi-temporal satellite images, prevalent shadows exhibit significant inconsistencies due to varying illumination conditions. To address this, we propose ShadowGS, a novel framework based on 3DGS. It leverages a physics-based rendering equation from remote sensing, combined with an efficient ray marching technique, to precisely model geometrically consistent shadows while maintaining efficient rendering. Additionally, it effectively disentangles different illumination components and apparent attributes in the scene. Furthermore, we introduce a shadow consistency constraint that significantly enhances the geometric accuracy of 3D reconstruction. We also incorporate a novel shadow map prior to improve performance with sparse-view inputs. Extensive experiments demonstrate that ShadowGS outperforms current state-of-the-art methods in shadow decoupling accuracy, 3D reconstruction precision, and novel view synthesis quality, with only a few minutes of training. ShadowGS exhibits robust performance across various settings, including RGB, pansharpened, and sparse-view satellite inputs.
Abstract:High-accuracy matching of multimodal optical images is the basis of geometric processing. However, the image matching accuracy is usually degraded by the nonlinear radiation and geometric deformation differences caused by different spectral responses. To address these problems, we proposed a phase consistency weighted least absolute deviation (PCWLAD) sub-pixel template matching method to improve the matching accuracy of multimodal optical images. This method consists of two main steps: coarse matching with the structural similarity index measure (SSIM) and fine matching with WLAD. In the coarse matching step, PCs are calculated without a noise filter to preserve the original structural details, and template matching is performed using the SSIM. In the fine matching step, we applied the radiometric and geometric transformation models between two multimodal PC templates based on the coarse matching. Furthermore, mutual structure filtering is adopted in the model to mitigate the impact of noise within the corresponding templates on the structural consistency, and the WLAD criterion is used to estimate the sub-pixel offset. To evaluate the performance of PCWLAD, we created three types of image datasets: visible to infrared Landsat images, visible to near-infrared close-range images, and visible to infrared uncrewed aerial vehicle (UAV) images. PCWLAD outperformed existing state-of-the-art eight methods in terms of correct matching rate (CMR) and root mean square error (RMSE) and reached an average matching accuracy of approximately 0.4 pixels across all three datasets. Our software and datasets are publicly available at https://github.com/huangtaocsu/PCWLAD.