Abstract:Recent advances in LLMs have made automated scientific research the next frontline in the path to artificial superintelligence. However, these systems are bound either to tasks of narrow scope or the limited creative capabilities of LLMs. We propose Spacer, a scientific discovery system that develops creative and factually grounded concepts without external intervention. Spacer attempts to achieve this via 'deliberate decontextualization,' an approach that disassembles information into atomic units - keywords - and draws creativity from unexplored connections between them. Spacer consists of (i) Nuri, an inspiration engine that builds keyword sets, and (ii) the Manifesting Pipeline that refines these sets into elaborate scientific statements. Nuri extracts novel, high-potential keyword sets from a keyword graph built with 180,000 academic publications in biological fields. The Manifesting Pipeline finds links between keywords, analyzes their logical structure, validates their plausibility, and ultimately drafts original scientific concepts. According to our experiments, the evaluation metric of Nuri accurately classifies high-impact publications with an AUROC score of 0.737. Our Manifesting Pipeline also successfully reconstructs core concepts from the latest top-journal articles solely from their keyword sets. An LLM-based scoring system estimates that this reconstruction was sound for over 85% of the cases. Finally, our embedding space analysis shows that outputs from Spacer are significantly more similar to leading publications compared with those from SOTA LLMs.
Abstract:The $F_\beta$ score is a commonly used measure of classification performance, which plays crucial roles in classification tasks with imbalanced data sets. However, the $F_\beta$ score cannot be used as a loss function by gradient-based learning algorithms for optimizing neural network parameters due to its non-differentiability. On the other hand, commonly used loss functions such as the binary cross-entropy (BCE) loss are not directly related to performance measures such as the $F_\beta$ score, so that neural networks optimized by using the loss functions may not yield optimal performance measures. In this study, we investigate a relationship between classification performance measures and loss functions in terms of the gradients with respect to the model parameters. Then, we propose a differentiable surrogate loss function for the optimization of the $F_\beta$ score. We show that the gradient paths of the proposed surrogate $F_\beta$ loss function approximate the gradient paths of the large sample limit of the $F_\beta$ score. Through numerical experiments using ResNets and benchmark image data sets, it is demonstrated that the proposed surrogate $F_\beta$ loss function is effective for optimizing $F_\beta$ scores under class imbalances in binary classification tasks compared with other loss functions.