Abstract:We introduce the Concurrent Modular Agent (CMA), a framework that orchestrates multiple Large-Language-Model (LLM)-based modules that operate fully asynchronously yet maintain a coherent and fault-tolerant behavioral loop. This framework addresses long-standing difficulties in agent architectures by letting intention emerge from language-mediated interactions among autonomous processes. This approach enables flexible, adaptive, and context-dependent behavior through the combination of concurrently executed modules that offload reasoning to an LLM, inter-module communication, and a single shared global state.We consider this approach to be a practical realization of Minsky's Society of Mind theory. We demonstrate the viability of our system through two practical use-case studies. The emergent properties observed in our system suggest that complex cognitive phenomena like self-awareness may indeed arise from the organized interaction of simpler processes, supporting Minsky-Society of Mind concept and opening new avenues for artificial intelligence research. The source code for our work is available at: https://github.com/AlternativeMachine/concurrent-modular-agent.
Abstract:We study life over the course of video game history as represented by their mechanics. While there have been some variations depending on genre or "character type", we find that most games converge to a similar representation. We also examine the development of Conway's Game of Life (one of the first zero player games) and related automata that have developed over the years. With this history in mind, we investigate the viability of one popular form of automata, namely Neural Cellular Automata, as a way to more fully express life within video game settings and innovate new game mechanics or gameplay loops.