Abstract:The extraction of visual features is an essential step in Visual Question Answering (VQA). Building a good visual representation of the analyzed scene is indeed one of the essential keys for the system to be able to correctly understand the latter in order to answer complex questions. In many fields such as remote sensing, the visual feature extraction step could benefit significantly from leveraging different image modalities carrying complementary spectral, spatial and contextual information. In this work, we propose to add multiple image modalities to VQA in the particular context of remote sensing, leading to a novel task for the computer vision community. To this end, we introduce a new VQA dataset, named TAMMI (Text and Multi-Modal Imagery) with diverse questions on scenes described by three different modalities (very high resolution RGB, multi-spectral imaging data and synthetic aperture radar). Thanks to an automated pipeline, this dataset can be easily extended according to experimental needs. We also propose the MM-RSVQA (Multi-modal Multi-resolution Remote Sensing Visual Question Answering) model, based on VisualBERT, a vision-language transformer, to effectively combine the multiple image modalities and text through a trainable fusion process. A preliminary experimental study shows promising results of our methodology on this challenging dataset, with an accuracy of 65.56% on the targeted VQA task. This pioneering work paves the way for the community to a new multi-modal multi-resolution VQA task that can be applied in other imaging domains (such as medical imaging) where multi-modality can enrich the visual representation of a scene. The dataset and code are available at https://tammi.sylvainlobry.com/.
Abstract:Visual Question Answering for Remote Sensing (RSVQA) is a task that aims at answering natural language questions about the content of a remote sensing image. The visual features extraction is therefore an essential step in a VQA pipeline. By incorporating attention mechanisms into this process, models gain the ability to focus selectively on salient regions of the image, prioritizing the most relevant visual information for a given question. In this work, we propose to embed an attention mechanism guided by segmentation into a RSVQA pipeline. We argue that segmentation plays a crucial role in guiding attention by providing a contextual understanding of the visual information, underlying specific objects or areas of interest. To evaluate this methodology, we provide a new VQA dataset that exploits very high-resolution RGB orthophotos annotated with 16 segmentation classes and question/answer pairs. Our study shows promising results of our new methodology, gaining almost 10% of overall accuracy compared to a classical method on the proposed dataset.