Abstract:Scaling laws describing the dependence of neural network performance on the amount of training data, the spent compute, and the network size have emerged across a huge variety of machine learning task and datasets. In this work, we systematically investigate these scaling laws in the context of amplitude surrogates for particle physics. We show that the scaling coefficients are connected to the number of external particles of the process. Our results demonstrate that scaling laws are a useful tool to achieve desired precision targets.
Abstract:Generative networks are perfect tools to enhance the speed and precision of LHC simulations. It is important to understand their statistical precision, especially when generating events beyond the size of the training dataset. We present two complementary methods to estimate the amplification factor without large holdout datasets. Averaging amplification uses Bayesian networks or ensembling to estimate amplification from the precision of integrals over given phase-space volumes. Differential amplification uses hypothesis testing to quantify amplification without any resolution loss. Applied to state-of-the-art event generators, both methods indicate that amplification is possible in specific regions of phase space, but not yet across the entire distribution.