Abstract:Honeypots are decoy systems used for gathering valuable threat intelligence or diverting attackers away from production systems. Maximising attacker engagement is essential to their utility. However research has highlighted that context-awareness, such as the ability to respond to new attack types, systems and attacker agents, is necessary to increase engagement. Large Language Models (LLMs) have been shown as one approach to increase context awareness but suffer from several challenges including accuracy and timeliness of response time, high operational costs and data-protection issues due to cloud deployment. We propose the System-Based Attention Shell Honeypot (SBASH) framework which manages data-protection issues through the use of lightweight local LLMs. We investigate the use of Retrieval Augmented Generation (RAG) supported LLMs and non-RAG LLMs for Linux shell commands and evaluate them using several different metrics such as response time differences, realism from human testers, and similarity to a real system calculated with Levenshtein distance, SBert, and BertScore. We show that RAG improves accuracy for untuned models while models that have been tuned via a system prompt that tells the LLM to respond like a Linux system achieve without RAG a similar accuracy as untuned with RAG, while having a slightly lower latency.




Abstract:On High-Performance Computing (HPC) systems, several hyperparameter configurations can be evaluated in parallel to speed up the Hyperparameter Optimization (HPO) process. State-of-the-art HPO methods follow a bandit-based approach and build on top of successive halving, where the final performance of a combination is estimated based on a lower than fully trained fidelity performance metric and more promising combinations are assigned more resources over time. Frequently, the number of epochs is treated as a resource, letting more promising combinations train longer. Another option is to use the number of workers as a resource and directly allocate more workers to more promising configurations via data-parallel training. This article proposes a novel Resource-Adaptive Successive Doubling Algorithm (RASDA), which combines a resource-adaptive successive doubling scheme with the plain Asynchronous Successive Halving Algorithm (ASHA). Scalability of this approach is shown on up to 1,024 Graphics Processing Units (GPUs) on modern HPC systems. It is applied to different types of Neural Networks (NNs) and trained on large datasets from the Computer Vision (CV), Computational Fluid Dynamics (CFD), and Additive Manufacturing (AM) domains, where performing more than one full training run is usually infeasible. Empirical results show that RASDA outperforms ASHA by a factor of up to 1.9 with respect to the runtime. At the same time, the solution quality of final ASHA models is maintained or even surpassed by the implicit batch size scheduling of RASDA. With RASDA, systematic HPO is applied to a terabyte-scale scientific dataset for the first time in the literature, enabling efficient optimization of complex models on massive scientific data. The implementation of RASDA is available on https://github.com/olympiquemarcel/rasda