Abstract:In this paper, we investigate the problem of tracking formations driven by bearings for heterogeneous Euler-Lagrange systems with parametric uncertainty in the presence of multiple moving leaders. To estimate the leaders' velocities and accelerations, we first design a distributed observer for the leader system, utilizing a bearing-based localization condition in place of the conventional connectivity assumption. This observer, coupled with an adaptive mechanism, enables the synthesis of a novel distributed control law that guides the formation towards the target formation, without requiring prior knowledge of the system parameters. Furthermore, we establish a sufficient condition, dependent on the initial formation configuration, that ensures collision avoidance throughout the formation evolution. The effectiveness of the proposed approach is demonstrated through a numerical example.