Abstract:Conventional anomaly detection in multivariate time series relies on the assumption that the set of observed variables remains static. In operational environments, however, monitoring systems frequently experience sensor churn. Signals may appear, disappear, or be renamed, creating data windows where the cardinality varies and may include values unseen during training. To address this challenge, we propose SMKC, a framework that decouples the dynamic input structure from the anomaly detector. We first employ permutation-invariant feature hashing to sketch raw inputs into a fixed size state sequence. We then construct a hybrid kernel image to capture global temporal structure through pairwise comparisons of the sequence and its derivatives. The model learns normal patterns using masked reconstruction and a teacher-student prediction objective. Our evaluation reveals that robust log-distance channels provide the primary discriminative signal, whereas cosine representations often fail to capture sufficient contrast. Notably, we find that a detector using random projections and nearest neighbors on the SMKC representation performs competitively with fully trained baselines without requiring gradient updates. This highlights the effectiveness of the representation itself and offers a practical cold-start solution for resource-constrained deployments.
Abstract:Character diversity in competitive games, while enriching gameplay, often introduces balance challenges that can negatively impact player experience and strategic depth. Traditional balance assessments rely on aggregate metrics like win rates and pick rates, which offer limited insight into the intricate dynamics of team-based games and nuanced character roles. This paper proposes a novel clustering-based methodology to analyze character balance, leveraging in-game data from Valorant to account for team composition influences and reveal latent character roles. By applying hierarchical agglomerative clustering with Jensen-Shannon Divergence to professional match data from the Valorant Champions Tour 2022, our approach identifies distinct clusters of agents exhibiting similar co-occurrence patterns within team compositions. This method not only complements existing quantitative metrics but also provides a more holistic and interpretable perspective on character synergies and potential imbalances, offering game developers a valuable tool for informed and context-aware balance adjustments.
Abstract:This study assesses the ability of Large Vision-Language Models (LVLMs) to differentiate between AI-generated and human-generated images. It introduces a new automated benchmark construction method for this evaluation. The experiment compared common LVLMs with human participants using a mixed dataset of AI and human-created images. Results showed that LVLMs could distinguish between the image types to some extent but exhibited a rightward bias, and perform significantly worse compared to humans. To build on these findings, we developed an automated benchmark construction process using AI. This process involved topic retrieval, narrative script generation, error embedding, and image generation, creating a diverse set of text-image pairs with intentional errors. We validated our method through constructing two caparable benchmarks. This study highlights the strengths and weaknesses of LVLMs in real-world understanding and advances benchmark construction techniques, providing a scalable and automatic approach for AI model evaluation.
Abstract:This study assesses the ability of Large Vision-Language Models (LVLMs) to differentiate between AI-generated and human-generated images. It introduces a new automated benchmark construction method for this evaluation. The experiment compared common LVLMs with human participants using a mixed dataset of AI and human-created images. Results showed that LVLMs could distinguish between the image types to some extent but exhibited a rightward bias, and perform significantly worse compared to humans. To build on these findings, we developed an automated benchmark construction process using AI. This process involved topic retrieval, narrative script generation, error embedding, and image generation, creating a diverse set of text-image pairs with intentional errors. We validated our method through constructing two caparable benchmarks. This study highlights the strengths and weaknesses of LVLMs in real-world understanding and advances benchmark construction techniques, providing a scalable and automatic approach for AI model evaluation.