Abstract:The training paradigm of DETRs is heavily contingent upon pre-training their backbone on the ImageNet dataset. However, the limited supervisory signals provided by the image classification task and one-to-one matching strategy result in an inadequately pre-trained neck for DETRs. Additionally, the instability of matching in the early stages of training engenders inconsistencies in the optimization objectives of DETRs. To address these issues, we have devised an innovative training methodology termed step-by-step training. Specifically, in the first stage of training, we employ a classic detector, pre-trained with a one-to-many matching strategy, to initialize the backbone and neck of the end-to-end detector. In the second stage of training, we froze the backbone and neck of the end-to-end detector, necessitating the training of the decoder from scratch. Through the application of step-by-step training, we have introduced the first real-time end-to-end object detection model that utilizes a purely convolutional structure encoder, DETR with YOLO (DEYO). Without reliance on any supplementary training data, DEYO surpasses all existing real-time object detectors in both speed and accuracy. Moreover, the comprehensive DEYO series can complete its second-phase training on the COCO dataset using a single 8GB RTX 4060 GPU, significantly reducing the training expenditure. Source code and pre-trained models are available at https://github.com/ouyanghaodong/DEYO.
Abstract:Recently, end-to-end object detectors have gained significant attention from the research community due to their outstanding performance. However, DETR typically relies on supervised pretraining of the backbone on ImageNet, which limits the practical application of DETR and the design of the backbone, affecting the model's potential generalization ability. In this paper, we propose a new training method called step-by-step training. Specifically, in the first stage, the one-to-many pre-trained YOLO detector is used to initialize the end-to-end detector. In the second stage, the backbone and encoder are consistent with the DETR-like model, but only the detector needs to be trained from scratch. Due to this training method, the object detector does not need the additional dataset (ImageNet) to train the backbone, which makes the design of the backbone more flexible and dramatically reduces the training cost of the detector, which is helpful for the practical application of the object detector. At the same time, compared with the DETR-like model, the step-by-step training method can achieve higher accuracy than the traditional training method of the DETR-like model. With the aid of this novel training method, we propose a brand-new end-to-end real-time object detection model called DEYOv3. DEYOv3-N achieves 41.1% on COCO val2017 and 270 FPS on T4 GPU, while DEYOv3-L achieves 51.3% AP and 102 FPS. Without the use of additional training data, DEYOv3 surpasses all existing real-time object detectors in terms of both speed and accuracy. It is worth noting that for models of N, S, and M scales, the training on the COCO dataset can be completed using a single 24GB RTX3090 GPU. Code will be released at https://github.com/ouyanghaodong/DEYOv3.
Abstract:This paper presents a novel object detector called DEYOv2, an improved version of the first-generation DEYO (DETR with YOLO) model. DEYOv2, similar to its predecessor, DEYOv2 employs a progressive reasoning approach to accelerate model training and enhance performance. The study delves into the limitations of one-to-one matching in optimization and proposes solutions to effectively address the issue, such as Rank Feature and Greedy Matching. This approach enables the third stage of DEYOv2 to maximize information acquisition from the first and second stages without needing NMS, achieving end-to-end optimization. By combining dense queries, sparse queries, one-to-many matching, and one-to-one matching, DEYOv2 leverages the advantages of each method. It outperforms all existing query-based end-to-end detectors under the same settings. When using ResNet-50 as the backbone and multi-scale features on the COCO dataset, DEYOv2 achieves 51.1 AP and 51.8 AP in 12 and 24 epochs, respectively. Compared to the end-to-end model DINO, DEYOv2 provides significant performance gains of 2.1 AP and 1.4 AP in the two epoch settings. To the best of our knowledge, DEYOv2 is the first fully end-to-end object detector that combines the respective strengths of classical detectors and query-based detectors.
Abstract:Object detection is an important topic in computer vision, with post-processing, an essential part of the typical object detection pipeline, posing a significant bottleneck affecting the performance of traditional object detection models. The detection transformer (DETR), as the first end-to-end target detection model, discards the requirement of manual components like the anchor and non-maximum suppression (NMS), significantly simplifying the target detection process. However, compared with most traditional object detection models, DETR converges very slowly, and a query's meaning is obscure. Thus, inspired by the Step-by-Step concept, this paper proposes a new two-stage object detection model, named DETR with YOLO (DEYO), which relies on a progressive inference to solve the above problems. DEYO is a two-stage architecture comprising a classic target detection model and a DETR-like model as the first and second stages, respectively. Specifically, the first stage provides high-quality query and anchor feeding into the second stage, improving the performance and efficiency of the second stage compared to the original DETR model. Meanwhile, the second stage compensates for the performance degradation caused by the first stage detector's limitations. Extensive experiments demonstrate that DEYO attains 50.6 AP and 52.1 AP in 12 and 36 epochs, respectively, while utilizing ResNet-50 as the backbone and multi-scale features on the COCO dataset. Compared with DINO, an optimal DETR-like model, the developed DEYO model affords a significant performance improvement of 1.6 AP and 1.2 AP in two epoch settings.