Abstract:The pursuit of general intelligence has traditionally centered on external objectives: an agent's control over its environments or mastery of specific tasks. This external focus, however, can produce specialized agents that lack adaptability. We propose representational empowerment, a new perspective towards a truly agent-centric learning paradigm by moving the locus of control inward. This objective measures an agent's ability to controllably maintain and diversify its own knowledge structures. We posit that the capacity -- to shape one's own understanding -- is an element for achieving better ``preparedness'' distinct from direct environmental influence. Focusing on internal representations as the main substrate for computing empowerment offers a new lens through which to design adaptable intelligent systems.
Abstract:Humans flexibly construct internal models to navigate novel situations. To be useful, these internal models must be sufficiently faithful to the environment that resource-limited planning leads to adequate outcomes; equally, they must be tractable to construct in the first place. We argue that analogy plays a central role in these processes, enabling agents to reuse solution-relevant structure from past experiences and amortise the computational costs of both model construction (construal) and planning. Formalising analogies as partial homomorphisms between Markov decision processes, we sketch a framework in which abstract modules, derived from previous construals, serve as composable building blocks for new ones. This modular reuse allows for flexible adaptation of policies and representations across domains with shared structural essence.
Abstract:Many aspects of human learning have been proposed as a process of constructing mental programs: from acquiring symbolic number representations to intuitive theories about the world. In parallel, there is a long-tradition of using information processing to model human cognition through Rate Distortion Theory (RDT). Yet, it is still poorly understood how to apply RDT when mental representations take the form of programs. In this work, we adapt RDT by proposing a three way trade-off among rate (description length), distortion (error), and computational costs (search budget). We use simulations on a melody task to study the implications of this trade-off, and show that constructing a shared program library across tasks provides global benefits. However, this comes at the cost of sensitivity to curricula, which is also characteristic of human learners. Finally, we use methods from partial information decomposition to generate training curricula that induce more effective libraries and better generalization.
Abstract:Intelligent tutoring systems optimize the selection and timing of learning materials to enhance understanding and long-term retention. This requires estimates of both the learner's progress (''knowledge tracing''; KT), and the prerequisite structure of the learning domain (''knowledge mapping''). While recent deep learning models achieve high KT accuracy, they do so at the expense of the interpretability of psychologically-inspired models. In this work, we present a solution to this trade-off. PSI-KT is a hierarchical generative approach that explicitly models how both individual cognitive traits and the prerequisite structure of knowledge influence learning dynamics, thus achieving interpretability by design. Moreover, by using scalable Bayesian inference, PSI-KT targets the real-world need for efficient personalization even with a growing body of learners and learning histories. Evaluated on three datasets from online learning platforms, PSI-KT achieves superior multi-step predictive accuracy and scalable inference in continual-learning settings, all while providing interpretable representations of learner-specific traits and the prerequisite structure of knowledge that causally supports learning. In sum, predictive, scalable and interpretable knowledge tracing with solid knowledge mapping lays a key foundation for effective personalized learning to make education accessible to a broad, global audience.