Abstract:Recent advances in large-scale language models (LLMs) have made multi-agent architectures attractive for challenging reasoning tasks. However, many existing systems rely on stochastic routing or ad-hoc heuristics, making their behavior difficult to reproduce and their decision process hard to interpret. We propose ORCH, a deterministic coordination framework for discrete-choice reasoning that orchestrates heterogeneous LLMs. ORCH follows a ``many analyses, one decision'' paradigm: multiple base models independently produce structured analyses, and a dedicated merge agent outputs the final choice. The framework uses fixed rules for task decomposition and answer aggregation, keeping the pipeline predictable, reproducible, and training-free. Determinism here refers to fixed routing and aggregation rules under a fixed evaluation protocol, rather than strict bit-level reproducibility across deployments. To exploit model complementarity, we optionally introduce an EMA-guided router that updates agent selection using historical accuracy, latency, or cost; since it relies on answer-based feedback, it is mainly intended for benchmarking, controlled evaluation, or delayed-feedback settings. Experiments on MMLU, MMLU-Pro, and GSM8K show that ORCH consistently outperforms single-model baselines and a majority-vote ensemble. On MMLU-Pro, ORCH improves accuracy by over 10 points compared to the strongest baseline, and on GSM8K it yields gains exceeding 50 points; McNemar tests confirm statistical significance. The EMA router provides an additional 0.7--2.0 point accuracy boost, and ablations show that both multi-agent collaboration and routing contribute substantially. Overall, ORCH offers a practical path toward controllable, interpretable, and deployment-ready LLM-based agent systems for discrete-choice reasoning.
Abstract:In this paper, HTTP status codes are used as custom metrics within the HPA as the experimental scenario. By integrating the Random Forest classification algorithm from machine learning, attacks are assessed and predicted, dynamically adjusting the maximum pod parameter in the HPA to manage attack traffic. This approach enables the adjustment of HPA parameters using machine learning scripts in targeted attack scenarios while effectively managing attack traffic. All access from attacking IPs is redirected to honeypot pods, achieving a lower incidence of 5XX status codes through HPA pod adjustments under high load conditions. This method also ensures effective isolation of attack traffic, preventing excessive HPA expansion due to attacks. Additionally, experiments conducted under various conditions demonstrate the importance of setting appropriate thresholds for HPA adjustments.