Abstract:We study the local stability of nonlinear systems in the Lur'e form with static nonlinear feedback realized by feedforward neural networks (FFNNs). By leveraging positivity system constraints, we employ a localized variant of the Aizerman conjecture, which provides sufficient conditions for exponential stability of trajectories confined to a compact set. Using this foundation, we develop two distinct methods for estimating the Region of Attraction (ROA): (i) a less conservative Lyapunov-based approach that constructs invariant sublevel sets of a quadratic function satisfying a linear matrix inequality (LMI), and (ii) a novel technique for computing tight local sector bounds for FFNNs via layer-wise propagation of linear relaxations. These bounds are integrated into the localized Aizerman framework to certify local exponential stability. Numerical results demonstrate substantial improvements over existing integral quadratic constraint-based approaches in both ROA size and scalability.
Abstract:This paper investigates the robustness of the Lur'e problem under positivity constraints, drawing on results from the positive Aizerman conjecture and the robustness properties of Metzler matrices. Specifically, we consider a control system of Lur'e type in which not only the linear part includes parametric uncertainty but also the nonlinear sector bound is unknown. We investigate tools from positive linear systems to effectively solve the problems in complicated and uncertain nonlinear systems. By leveraging the positivity characteristic of the system, we derive an explicit formula for the stability radius of Lur'e systems. Furthermore, we extend our analysis to systems with neural network (NN) feedback loops. Building on this approach, we also propose a refinement method for sector bounds of feedforward neural networks (FFNNs). This study introduces a scalable and efficient approach for robustness analysis of both Lur'e and NN-controlled systems. Finally, the proposed results are supported by illustrative examples.
Abstract:This paper introduces a novel method for the stability analysis of positive feedback systems with a class of fully connected feedforward neural networks (FFNN) controllers. By establishing sector bounds for fully connected FFNNs without biases, we present a stability theorem that demonstrates the global exponential stability of linear systems under fully connected FFNN control. Utilizing principles from positive Lur'e systems and the positive Aizerman conjecture, our approach effectively addresses the challenge of ensuring stability in highly nonlinear systems. The crux of our method lies in maintaining sector bounds that preserve the positivity and Hurwitz property of the overall Lur'e system. We showcase the practical applicability of our methodology through its implementation in a linear system managed by a FFNN trained on output feedback controller data, highlighting its potential for enhancing stability in dynamic systems.