Abstract:Wireless communications advance hand-in-hand with artificial intelligence (AI), indicating an interconnected advancement where each facilitates and benefits from the other. This synergy is particularly evident in the development of the sixth-generation technology standard for mobile networks (6G), envisioned to be AI-native. Generative-AI (GenAI), a novel technology capable of producing various types of outputs, including text, images, and videos, offers significant potential for wireless communications, with its distinctive features. Traditionally, conventional AI techniques have been employed for predictions, classifications, and optimization, while GenAI has more to offer. This article introduces the concept of strategic demand-planning through demand-labeling, demand-shaping, and demand-rescheduling. Accordingly, GenAI is proposed as a powerful tool to facilitate demand-shaping in wireless networks. More specifically, GenAI is used to compress and convert the content of various kind (e.g., from a higher bandwidth mode to a lower one, such as from a video to text), which subsequently enhances performance of wireless networks in various usage scenarios such as cell-switching, user association and load balancing, interference management, and disaster scenarios management. Therefore, GenAI can serve a function in saving energy and spectrum in wireless networks. With recent advancements in AI, including sophisticated algorithms like large-language-models and the development of more powerful hardware built exclusively for AI tasks, such as AI accelerators, the concept of demand-planning, particularly demand-shaping through GenAI, becomes increasingly relevant. Furthermore, recent efforts to make GenAI accessible on devices, such as user terminals, make the implementation of this concept even more straightforward and feasible.
Abstract:The high altitude platform station (HAPS) technology is garnering significant interest as a viable technology for serving as base stations in communication networks. However, HAPS faces the challenge of high spatial correlation among adjacent users' channel gains which is due to the dominant line-of-sight (LoS) path between HAPS and terrestrial users. Furthermore, there is a spatial correlation among antenna elements of HAPS that depends on the propagation environment and the distance between elements of the antenna array. This paper presents an antenna architecture for HAPS and considers the mentioned issues by characterizing the channel gain and the spatial correlation matrix of the HAPS. We propose a cylindrical antenna for HAPS that utilizes vertical uniform linear array (ULA) sectors. Moreover, to address the issue of high spatial correlation among users, the non-orthogonal multiple access (NOMA) clustering method is proposed. An algorithm is also developed to allocate power among users to maximize both spectral efficiency and energy efficiency while meeting quality of service (QoS) and successive interference cancellation (SIC) conditions. Finally, simulation results indicate that the spatial correlation has a significant impact on spectral efficiency and energy efficiency in multiple antenna HAPS systems.
Abstract:We address the challenge of developing an orthogonal time-frequency space (OTFS)-based non-orthogonal multiple access (NOMA) system where each user is modulated using orthogonal pulses in the delay Doppler domain. Building upon the concept of the sufficient (bi)orthogonality train-pulse [1], we extend this idea by introducing Hermite functions, known for their orthogonality properties. Simulation results demonstrate that our proposed Hermite functions outperform the traditional OTFS-NOMA schemes, including power-domain (PDM) NOMA and code-domain (CDM) NOMA, in terms of bit error rate (BER) over a high-mobility channel. The algorithm's complexity is minimal, primarily involving the demodulation of OTFS. The spectrum efficiency of Hermite-based OTFS-NOMA is K times that of OTFS-CDM-NOMA scheme, where K is the spreading length of the NOMA waveform.
Abstract:Uncrewed aerial vehicles (UAVs) have attracted recent attention for sixth-generation (6G) networks due to their low cost and flexible deployment. In order to maximize the ever-increasing data rates, spectral efficiency, and wider coverage, technologies such as reconfigurable intelligent surface (RIS) and non-orthogonal multiple access (NOMA) are adapted with UAVs (UAV-RIS NOMA). However, the error performance of UAV-RIS NOMA has not been considered, yet. In this letter, we investigate the error probability of UAV-RIS NOMA systems. We also consider the practical constraints of hardware impairments (HWI) at the transceivers, inter-cell interference (ICI), and imperfect successive interference cancellation (SIC). The analytical derivations are validated by Monte-Carlo simulations. Our results demonstrate that our proposed system achieves higher performance gain (more than 5 dB with increasing the number of RIS elements) with less error probability compared to UAVs without RIS. Moreover, it is found that the HWI, ICI, and imperfect SIC have shown a negative impact on the system performance.
Abstract:Channel and delay coefficient are two essential parameters for the characterization of a multipath propagation environment. It is crucial to generate realistic channel and delay coefficient in order to study the channel characteristics that involves signals propagating through environments with severe multipath effects. While many deterministic channel models, such as ray-tracing (RT), face challenges like high computational complexity, data requirements for geometrical information, and inapplicability for space-ground links, and nongeometry-based stochastic channel models (NGSCMs) might lack spatial consistency and offer lower accuracy, we present a scalable tutorial for the channel modeling of dual mobile space-ground links in urban areas, utilizing the Quasi Deterministic Radio Channel Generator (QuaDRiGa), which adopts a geometry-based stochastic channel model (GSCM), in conjunction with an International Telecommunication Union (ITU) provided state duration model. This tutorial allows for the generation of realistic channel and delay coefficients in a multipath environment for dual mobile space-ground links. We validate the accuracy of the work by analyzing the generated channel and delay coefficient from several aspects, such as received signal power and amplitude, multipath delay distribution, delay spread and Doppler spectrum.
Abstract:In order to bolster future wireless networks, there has been a great deal of interest in non-terrestrial networks, especially aerial platform stations including the high altitude platform station (HAPS) and uncrewed aerial vehicles (UAV). These platforms can integrate advanced technologies such as reconfigurable intelligent surfaces (RIS) and non-orthogonal multiple access (NOMA). In this regard, this paper proposes a multi-layer network architecture to improve the performance of conventional HAPS super-macro base station (HAPS-SMBS)-assisted UAV. The architecture includes a HAPS-SMBS, UAVs equipped with active transmissive RIS, and ground Internet of things devices. We also consider multiple-input single-output (MISO) technology, by employing multiple antennas at the HAPS-SMBS and a single antenna at the Internet of things devices. Additionally, we consider NOMA as the multiple access technology as well as the existence of hardware impairments as a practical limitation. In particular, we compare the proposed system model with three different scenarios: HAPS-SMBS-assisted UAV that are equipped with active transmissive RIS and supported by single-input single-output system, HAPS-SMBS-assisted UAV that are equipped with amplify-and-forward relaying, and HAPS-SMBS-assisted UAV-equipped with passive transmissive RIS. Sum rate and energy efficiency are used as performance metrics, and the findings demonstrate that, in comparison to all benchmarks, the proposed system yields higher performance gain. Moreover, the hardware impairment limits the system performance at high transmit power levels.
Abstract:This study aims to introduce the cell load estimation problem of cell switching approaches in cellular networks specially-presented in a high-altitude platform station (HAPS)-assisted network. The problem arises from the fact that the traffic loads of sleeping base stations for the next time slot cannot be perfectly known, but they can rather be estimated, and any estimation error could result in divergence from the optimal decision, which subsequently affects the performance of energy efficiency. The traffic loads of the sleeping base stations for the next time slot are required because the switching decisions are made proactively in the current time slot. Two different Q-learning algorithms are developed; one is full-scale, focusing solely on the performance, while the other one is lightweight and addresses the computational cost. Results confirm that the estimation error is capable of changing cell switching decisions that yields performance divergence compared to no-error scenarios. Moreover, the developed Q-learning algorithms perform well since an insignificant difference (i.e., 0.3%) is observed between them and the optimum algorithm.
Abstract:Distributed massive multiple-input multiple output (mMIMO) system for low earth orbit (LEO) satellite networks is introduced as a promising technique to provide broadband connectivity. Nevertheless, several challenges persist in implementing distributed mMIMO systems for LEO satellite networks. These challenges include providing scalable massive access implementation as the system complexity increases with network size. Another challenging issue is the asynchronous arrival of signals at the user terminals due to the different propagation delays among distributed antennas in space, which destroys the coherent transmission, and consequently degrades the system performance. In this paper, we propose a scalable distributed mMIMO system for LEO satellite networks based on dynamic user-centric clustering. Aiming to obtain scalable implementation, new algorithms for initial cooperative access, cluster selection, and cluster handover are provided. In addition, phase shift-aware precoding is implemented to compensate for the propagation delay phase shifts. The performance of the proposed user-centric distributed mMIMO is compared with two baseline configurations: the non-cooperative transmission systems, where each user connects to only a single satellite, and the full-cooperative distributed mMIMO systems, where all satellites contribute serving each user. The numerical results show the potential of the proposed distributed mMIMO system to enhance system spectral efficiency when compared to noncooperative transmission systems. Additionally, it demonstrates the ability to minimize the serving cluster size for each user, thereby reducing the overall system complexity in comparison to the full-cooperative distributed mMIMO systems.
Abstract:The pursuit of higher data rates and efficient spectrum utilization in modern communication technologies necessitates novel solutions. In order to provide insights into improving spectral efficiency and reducing latency, this study investigates the maximum channel coding rate (MCCR) of finite block length (FBL) multiple-input multiple-output (MIMO) faster-than-Nyquist (FTN) channels. By optimizing power allocation, we derive the system's MCCR expression. Simulation results are compared with the existing literature to reveal the benefits of FTN in FBL transmission.
Abstract:This study investigates the integration of a high altitude platform station (HAPS), a non-terrestrial network (NTN) node, into the cell-switching paradigm for energy saving. By doing so, the sustainability and ubiquitous connectivity targets can be achieved. Besides, a delay-aware approach is also adopted, where the delay profiles of users are respected in such a way that we attempt to meet the latency requirements of users with a best-effort strategy. To this end, a novel, simple, and lightweight Q-learning algorithm is designed to address the cell-switching optimization problem. During the simulation campaigns, different interference scenarios and delay situations between base stations are examined in terms of energy consumption and quality-of-service (QoS), and the results confirm the efficacy of the proposed Q-learning algorithm.