Abstract:The application of process-based and data-driven hydrological models is crucial in modern hydrological research, especially for predicting key water cycle variables such as runoff, evapotranspiration (ET), and soil moisture. These models provide a scientific basis for water resource management, flood forecasting, and ecological protection. Process-based models simulate the physical mechanisms of watershed hydrological processes, while data-driven models leverage large datasets and advanced machine learning algorithms. This paper reviewed and compared methods for assessing and enhancing the extrapolability of both model types, discussing their prospects and limitations. Key strategies include the use of leave-one-out cross-validation and similarity-based methods to evaluate model performance in ungauged regions. Deep learning, transfer learning, and domain adaptation techniques are also promising in their potential to improve model predictions in data-sparse and extreme conditions. Interdisciplinary collaboration and continuous algorithmic advancements are also important to strengthen the global applicability and reliability of hydrological models.
Abstract:Machine learning-based hydrological prediction models, despite their high accuracy, face limitations in extrapolation capabilities when applied globally due to uneven data distribution. This study integrates Domain-Adversarial Neural Networks (DANN) to improve the geographical adaptability of evapotranspiration (ET) models. By employing DANN, we aim to mitigate distributional discrepancies between different sites, significantly enhancing the model's extrapolation capabilities. Our results show that DANN improves ET prediction accuracy with an average increase in the Kling-Gupta Efficiency (KGE) of 0.2 to 0.3 compared to the traditional Leave-One-Out (LOO) method. DANN is particularly effective for isolated sites and transition zones between biomes, reducing data distribution discrepancies and avoiding low-accuracy predictions. By leveraging information from data-rich areas, DANN enhances the reliability of global-scale ET products, especially in ungauged regions. This study highlights the potential of domain adaptation techniques to improve the extrapolation and generalization capabilities of machine learning models in hydrological studies.
Abstract:Due to the heterogeneity of the global distribution of ecological and hydrological ground-truth observations, machine learning models can have limited adaptability when applied to unknown locations, which is referred to as weak extrapolability. Domain adaptation techniques have been widely used in machine learning domains such as image classification, which can improve the model generalization ability by adjusting the difference or inconsistency of the domain distribution between the training and test sets. However, this approach has rarely been used explicitly in machine learning models in ecology and hydrology at the global scale, although these models have often been questioned due to geographic extrapolability issues. This paper briefly describes the shortcomings of current machine learning models of ecology and hydrology in terms of the global representativeness of the distribution of observations and the resulting limitations of the lack of extrapolability and suggests that future related modelling efforts should consider the use of domain adaptation techniques to improve extrapolability.