Abstract:Mapping the terrain and understory hidden beneath dense forest canopies is of great interest for numerous applications such as search and rescue, trail mapping, forest inventory tasks, and more. Existing solutions rely on specialized sensors: either heavy, costly airborne LiDAR, or Airborne Optical Sectioning (AOS), which uses thermal synthetic aperture photography and is tailored for person detection. We introduce a novel approach for the reconstruction of canopy-free, photorealistic ground views using only conventional RGB images. Our solution is based on the celebrated Neural Radiance Fields (NeRF), a recent 3D reconstruction method. Additionally, we include specific image capture considerations, which dictate the needed illumination to successfully expose the scene beneath the canopy. To better cope with the poorly lit understory, we employ a low light loss. Finally, we propose two complementary approaches to remove occluding canopy elements by controlling per-ray integration procedure. To validate the value of our approach, we present two possible downstream tasks. For the task of search and rescue (SAR), we demonstrate that our method enables person detection which achieves promising results compared to thermal AOS (using only RGB images). Additionally, we show the potential of our approach for forest inventory tasks like tree counting. These results position our approach as a cost-effective, high-resolution alternative to specialized sensors for SAR, trail mapping, and forest-inventory tasks.
Abstract:As generative models continue to evolve, detecting AI-generated images remains a critical challenge. While effective detection methods exist, they often lack formal interpretability and may rely on implicit assumptions about fake content, potentially limiting robustness to distributional shifts. In this work, we introduce a rigorous, statistically grounded framework for fake image detection that focuses on producing a probability score interpretable with respect to the real-image population. Our method leverages the strengths of multiple existing detectors by combining training-free statistics. We compute p-values over a range of test statistics and aggregate them using classical statistical ensembling to assess alignment with the unified real-image distribution. This framework is generic, flexible, and training-free, making it well-suited for robust fake image detection across diverse and evolving settings.