Abstract:After two years of appearance, COVID-19 has negatively affected people and normal life around the world. As in May 2022, there are more than 522 million cases and six million deaths worldwide (including nearly ten million cases and over forty-three thousand deaths in Vietnam). Economy and society are both severely affected. The variant of COVID-19, Omicron, has broken disease prevention measures of countries and rapidly increased number of infections. Resources overloading in treatment and epidemics prevention is happening all over the world. It can be seen that, application of artificial intelligence (AI) to support people at this time is extremely necessary. There have been many studies applying AI to prevent COVID-19 which are extremely useful, and studies on machine reading comprehension (MRC) are also in it. Realizing that, we created the first MRC dataset about COVID-19 for Vietnamese: ViQA-COVID and can be used to build models and systems, contributing to disease prevention. Besides, ViQA-COVID is also the first multi-span extraction MRC dataset for Vietnamese, we hope that it can contribute to promoting MRC studies in Vietnamese and multilingual.
Abstract:The COVID-19 pandemic caused great losses worldwide, efforts are taken place to prevent but many countries have failed. In Vietnam, the traceability, localization, and quarantine of people who contact with patients contribute to effective disease prevention. However, this is done by hand, and take a lot of work. In this research, we describe a named-entity recognition (NER) study that assists in the prevention of COVID-19 pandemic in Vietnam. We also present our manually annotated COVID-19 dataset with nested named entity recognition task for Vietnamese which be defined new entity types using for our system.