Abstract:Knowledge Distillation (KD) is one of the approaches to reduce the size of Large Language Models (LLMs). A LLM with smaller number of model parameters (student) is trained to mimic the performance of a LLM of a larger size (teacher model) on a specific task. For domain-specific tasks, it is not clear if teacher or student model, or both, must be considered for domain adaptation. In this work, we study this problem from perspective of telecom domain Question-Answering (QA) task. We systematically experiment with Supervised Fine-tuning (SFT) of teacher only, SFT of student only and SFT of both prior to KD. We design experiments to study the impact of vocabulary (same and different) and KD algorithms (vanilla KD and Dual Space KD, DSKD) on the distilled model. Multi-faceted evaluation of the distillation using 14 different metrics (N-gram, embedding and LLM-based metrics) is considered. Experimental results show that SFT of teacher improves performance of distilled model when both models have same vocabulary, irrespective of algorithm and metrics. Overall, SFT of both teacher and student results in better performance across all metrics, although the statistical significance of the same depends on the vocabulary of the teacher models.
Abstract:A plethora of sentence embedding models makes it challenging to choose one, especially for domains such as telecom, rich with specialized vocabulary. We evaluate multiple embeddings obtained from publicly available models and their domain-adapted variants, on both point retrieval accuracies as well as their (95\%) confidence intervals. We establish a systematic method to obtain thresholds for similarity scores for different embeddings. We observe that fine-tuning improves mean bootstrapped accuracies as well as tightens confidence intervals. The pre-training combined with fine-tuning makes confidence intervals even tighter. To understand these variations, we analyse and report significant correlations between the distributional overlap between top-$K$, correct and random sentence similarities with retrieval accuracies and similarity thresholds. Following current literature, we analyze if retrieval accuracy variations can be attributed to isotropy of embeddings. Our conclusions are that isotropy of embeddings (as measured by two independent state-of-the-art isotropy metric definitions) cannot be attributed to better retrieval performance. However, domain adaptation which improves retrieval accuracies also improves isotropy. We establish that domain adaptation moves domain specific embeddings further away from general domain embeddings.