OCKHAM
Abstract:In this article, we investigate the potential of multilevel approaches to accelerate the training of transformer architectures. Using an ordinary differential equation (ODE) interpretation of these architectures, we propose an appropriate way of varying the discretization of these ODE Transformers in order to accelerate the training. We validate our approach experimentally by a comparison with the standard training procedure.
Abstract:This article measures how sparsity can make neural networks more robust to membership inference attacks. The obtained empirical results show that sparsity improves the privacy of the network, while preserving comparable performances on the task at hand. This empirical study completes and extends existing literature.
Abstract:This article measures how sparsity can make neural networks more robust to membership inference attacks. The obtained empirical results show that sparsity improves the privacy of the network, while preserving comparable performances on the task at hand. This empirical study completes and extends existing literature.