Abstract:We introduce Prob-GParareal, a probabilistic extension of the GParareal algorithm designed to provide uncertainty quantification for the Parallel-in-Time (PinT) solution of (ordinary and partial) differential equations (ODEs, PDEs). The method employs Gaussian processes (GPs) to model the Parareal correction function, as GParareal does, further enabling the propagation of numerical uncertainty across time and yielding probabilistic forecasts of system's evolution. Furthermore, Prob-GParareal accommodates probabilistic initial conditions and maintains compatibility with classical numerical solvers, ensuring its straightforward integration into existing Parareal frameworks. Here, we first conduct a theoretical analysis of the computational complexity and derive error bounds of Prob-GParareal. Then, we numerically demonstrate the accuracy and robustness of the proposed algorithm on five benchmark ODE systems, including chaotic, stiff, and bifurcation problems. To showcase the flexibility and potential scalability of the proposed algorithm, we also consider Prob-nnGParareal, a variant obtained by replacing the GPs in Parareal with the nearest-neighbors GPs, illustrating its increased performance on an additional PDE example. This work bridges a critical gap in the development of probabilistic counterparts to established PinT methods.
Abstract:Parallel-in-time (PinT) techniques have been proposed to solve systems of time-dependent differential equations by parallelizing the temporal domain. Among them, Parareal computes the solution sequentially using an inaccurate (fast) solver, and then "corrects" it using an accurate (slow) integrator that runs in parallel across temporal subintervals. This work introduces RandNet-Parareal, a novel method to learn the discrepancy between the coarse and fine solutions using random neural networks (RandNets). RandNet-Parareal achieves speed gains up to x125 and x22 compared to the fine solver run serially and Parareal, respectively. Beyond theoretical guarantees of RandNets as universal approximators, these models are quick to train, allowing the PinT solution of partial differential equations on a spatial mesh of up to $10^5$ points with minimal overhead, dramatically increasing the scalability of existing PinT approaches. RandNet-Parareal's numerical performance is illustrated on systems of real-world significance, such as the viscous Burgers' equation, the Diffusion-Reaction equation, the two- and three-dimensional Brusselator, and the shallow water equation.