Abstract:Bug Reproduction Tests (BRTs) have been used in many agentic Automated Program Repair (APR) systems, primarily for validating promising fixes and aiding fix generation. In practice, when developers submit a patch, they often implement the BRT alongside the fix. Our experience deploying agentic APR reveals that developers similarly desire a BRT within AI-generated patches to increase their confidence. However, canonical APR systems tend to generate BRTs and fixes separately, or focus on producing only the fix in the final patch. In this paper, we study agentic APR in the context of cogeneration, where the APR agent is instructed to generate both a fix and a BRT in the same patch. We evaluate the effectiveness of different cogeneration strategies on 120 human-reported bugs at Google and characterize different cogeneration strategies by their influence on APR agent behavior. We develop and evaluate patch selectors that account for test change information to select patches with plausible fixes (and plausible BRTs). Finally, we analyze the root causes of failed cogeneration trajectories. Importantly, we show that cogeneration allows the APR agent to generate BRTs for at least as many bugs as a dedicated BRT agent, without compromising the generation rate of plausible fixes, thereby reducing engineering effort in maintaining and coordinating separate generation pipelines for fix and BRT at scale.
Abstract:In this report, we present the latest model of the Gemini family, Gemini 1.5 Pro, a highly compute-efficient multimodal mixture-of-experts model capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. Gemini 1.5 Pro achieves near-perfect recall on long-context retrieval tasks across modalities, improves the state-of-the-art in long-document QA, long-video QA and long-context ASR, and matches or surpasses Gemini 1.0 Ultra's state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5 Pro's long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 2.1 (200k) and GPT-4 Turbo (128k). Finally, we highlight surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content.