Abstract:With the presence of robots increasing in the society, the need for interacting with robots is becoming necessary. The field of Human-Robot Interaction (HRI) has emerged important since more repetitive and tiresome jobs are being done by robots. In the recent times, the field of soft robotics has seen a boom in the field of research and commercialization. The Industry 5.0 focuses on human robot collaboration which also spurs the field of soft robotics. However the HRI for soft robotics is still in the nascent stage. In this work we review and then discuss how HRI is done for soft robots. We first discuss the control, design, materials and manufacturing of soft robots. This will provide an understanding of what is being interacted with. Then we discuss about the various input and output modalities that are used in HRI. The applications where the HRI for soft robots are found in the literature are discussed in detail. Then the limitations of HRI for soft robots and various research opportunities that exist in this field are discussed in detail. It is concluded that there is a huge scope for development for HRI for soft robots.
Abstract:While current personal smart devices excel in digital domains, they fall short in assisting users during human environment interaction. This paper proposes Heads Up eXperience (HUX), an AI system designed to bridge this gap, serving as a constant companion across the extended reality (XR) environments. By tracking the user's eye gaze, analyzing the surrounding environment, and interpreting verbal contexts, the system captures and enhances multi-modal data, providing holistic context interpretation and memory storage in real-time task specific situations. This comprehensive approach enables more natural, empathetic and intelligent interactions between the user and HUX AI, paving the path for human computer environment interaction. Intended for deployment in smart glasses and extended reality headsets, HUX AI aims to become a personal and useful AI companion for daily life. By integrating digital assistance with enhanced physical world interactions, this technology has the potential to revolutionize human-AI collaboration in both personal and professional spheres paving the way for the future of personal smart devices.
Abstract:This work presents a soft continuum robot (SCR) that can be used as a soft continuum manipulator (SCM) and a soft snake robot (SSR). This is achieved using expanded polyethylene foam (EPE) modules as the soft material. In situations like post-earthquake search operations, these dual-purpose robots could play a vital role. The soft continuum manipulator with a camera attached to the tip can manually search for survivors in the debris. On the other hand, the soft snake robot can be made by attaching an active wheel to the soft continuum manipulator. This mobile robot can reach places humans cannot and gather information about survivors. This work presents the design, fabrication, and experimental validation of the dual soft continuum robot.